Page 367 - Handbook Of Integral Equations
P. 367

x
                                        t
                                                             λ
               16.   y(x)+ A    x –λ–1 f   y(t)y(x – t) dt = Bx .
                                        x
                              0
                                                      λ
                                       λ
                     Solutions: y 1 (x)= β 1 x and y 2 (x)= β 2 x , where β 1,2 are the roots of the quadratic equation
                                                               1
                                                                    λ
                                         2
                                                                          λ
                                     AIβ + β – B =0,     I =   f(z)z (1 – z) dz.
                                                             0
                             ∞

               17.   y(x)+     f(t – x)y(t – x)y(t) dt = ae –λx .
                            x
                     Solutions: y(x)= b k e –λx , where b k (k = 1, 2) are the roots of the quadratic equation
                                                              ∞

                                         2
                                        b I + b – a =0,  I =    f(z)e –2λz  dz.
                                                             0
                     To calculate the integral I, it is convenient to use tables of Laplace transforms (with parameter
                     p =2λ).
               5.3. Equations With Power-Law Nonlinearity

                 5.3-1. Equations Containing Arbitrary Parameters

                                x
                                 λ k
               1.    y(x)+ A    t y (t) dt = Bx λ+1  + C.
                              a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:
                                       y     du
                              (λ +1)                 + x λ+1  – a λ+1  =0,  y 0 = Ba λ+1  + C.
                                          k
                                       Au – B(λ +1)
                                     y 0
                             x   k
                                y (t)
               2.    y(x)+            dt = A.
                            0  ax + bt
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                    b   k

                                              ln 1+    λ + bλ – Ab =0.
                                                    a
                                   k
                                  x  y (t) dt
               3.    y(x)+ Ax      2   2  = B.
                               0  x + t
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation

                                                      1
                                                           k
                                                   λ + Aπλ = B.
                                                      4
                                 k
                               x  y (t) dt
               4.    y(x)+     √          = A.
                                   2
                            0    ax + bt 2
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                                1
                                                                    dz
                                           k
                                         Iλ + λ – A =0,    I =    √      .
                                                               0   a + bz 2

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 347
   362   363   364   365   366   367   368   369   370   371   372