Page 362 - Handbook Of Integral Equations
P. 362

x

                                                            1
               33.   y(x)+ A    x –λ–1 2         λ     λ > – .
                                     y (t) dt = Bx ,
                                                            2
                              0
                                                      λ
                                       λ
                     Solutions: y 1 (x)= β 1 x and y 2 (x)= β 2 x , where β 1,2 are the roots of the quadratic equation
                       2
                     Aβ +(2λ +1)β – B(2λ + 1)=0.
                             x  2
                               y (t) dt
               34.   y(x)+            = A.
                            0  ax + bt
                     Solutions: y 1 (x)= λ 1 and y 2 (x)= λ 2 , where λ 1,2 are the roots of the quadratic equation
                           b  2

                     ln 1+   λ + bλ – Ab =0.
                           a
                                  2
                                x  y (t) dt
               35.   y(x)+ A      2   2  = Bx.
                              0  x + t
                     Solutions: y 1 (x)= λ 1 x and y 2 (x)= λ 2 x, where λ 1,2 are the roots of the quadratic equation
                         1     2
                      1 – π Aλ + λ – B =0.
                         4
                                  2
                               x  y (t) dt
               36.   y(x)+     √          = A.
                                   2
                            0    ax + bt 2
                     Solutions: y 1 (x)= λ 1 and y 2 (x)= λ 2 , where λ 1,2 are the roots of the quadratic equation
                                                                 1  dz
                                           2
                                         Iλ + λ – A =0,    I =    √      .
                                                               0   a + bz 2
                                x           λ+1
                                   n    n –     2          λ

               37.   y(x)+ A    ax + bt      n  y (t) dt = Bx .
                              0
                                       λ
                                                      λ
                     Solutions: y 1 (x)= β 1 x and y 2 (x)= β 2 x , where β 1,2 are the roots of the quadratic equation
                                                             1           λ+1
                                        2                      2λ     n –
                                    AIβ + β – B =0,    I =   z   a + bz   n  dz.
                                                           0
                              x

                                 λt 2
               38.   y(x)+ A    e y (t) dt = Be λx  + C.
                              a
                                                                   2
                     This is a special case of equation 5.8.11 with f(y)= Ay . By differentiation, this integral
                     equation can be reduced to a separable ordinary differential equation.
                        Solution in an implicit form:
                                        y   du
                                    λ             + e λx  – e λa  =0,  y 0 = Be λa  + C.
                                           2
                                         Au – Bλ
                                      y 0
                                x
               39.   y(x)+ A    e λ(x–t) 2
                                      y (t) dt = B.
                              a
                     This is a special case of equation 5.8.12. By differentiation, this integral equation can be
                     reduced to the separable ordinary differential equation
                                                2
                                         y + Ay – λy + λB =0,     y(a)= B.

                                          x
                        Solution in an implicit form:
                                                     du
                                               y
                                                             + x – a =0.
                                                Au – λu + λB
                                                   2
                                             B
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 342
   357   358   359   360   361   362   363   364   365   366   367