Page 358 - Handbook Of Integral Equations
P. 358

x

               5.       y(t)y(x – t) dt =(Ax + B)e λx ,  A, B >0.
                      0
                     Solutions:


                                        √        1        A        A       A
                                 y(x)= ± Be  λx  √   exp –  x +      erf      x   ,
                                                  πx      B        B       B
                                  2     z     2
                     where erf z = √    exp –t  dt is the error function.
                                  π
                                     0
                         x
                                           µ λx
                                         2
               6.       y(t)y(x – t) dt = A x e  .
                      0
                     Solutions:                       √
                                                    A Γ(µ +1)   µ–1  λx
                                             y(x)= ±     µ+1     x 2 e .
                                                      Γ
                                                          2
                       x

                                           µ–1     µ    λx
               7.       y(t)y(x – t) dt = Ax  + Bx   e  .
                      0
                     Solutions:
                                       √
                                        AΓ(µ)  µ–2   
      B         µ +1 µ   B
                               y(x)= ±        x 2 exp  λ – µ   x Φ       ,  ; µ  x ,
                                       Γ(µ/2)               A         2    2   A
                     where Φ(a, c; x) is the degenerate hypergeometric function (Kummer’s function).

                         x
                                         2
               8.       y(t)y(x – t) dt = A cosh(λx).
                      0
                                      A d      x  I 0 (λt) dt
                     Solutions: y(x)= ± √        √     , where I 0 is the modified Bessel function.
                                       π dx  0    x – t
                       x

               9.       y(t)y(x – t) dt = A sinh(λx).
                      0
                                   √
                     Solutions: y = ± Aλ I 0 (λx), where I 0 is the modified Bessel function.
                       x

                                               √
               10.      y(t)y(x – t) dt = A sinh(λ x ).
                      0
                                   √
                                                 x
                                          2
                     Solutions: y = ± Aπ 1/4 –7/8 3/4 –1/8 I –1/4 λ  1  x , where I –1/4 is the modified Bessel
                                              λ
                                                              2
                     function.
                       x

                                         2
               11.      y(t)y(x – t) dt = A cos(λx).
                      0
                                      A d      x  J 0 (λt) dt
                     Solutions: y(x)= ± √        √     , where J 0 is the Bessel function.
                                       π dx  0    x – t
                       x

               12.      y(t)y(x – t) dt = A sin(λx).
                      0
                                   √
                     Solutions: y = ± Aλ J 0 (λx), where J 0 is the Bessel function.

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 338
   353   354   355   356   357   358   359   360   361   362   363