Page 354 - Handbook Of Integral Equations
P. 354

b
               59.   y(x)+    f(t)y(ξ) dt =0,   ξ = xϕ(t).
                            a
                     Eigenfunctions of this integral equation are determined by the roots of the following tran-
                     scendental (or algebraic) equation for λ:
                                                   b
                                                           λ
                                                   f(t)[ϕ(t)] dt = –1.                      (1)
                                                 a
                     1 . For a real (simple) root λ k of equation (1), there is a corresponding eigenfunction
                      ◦
                                                    y k (x)= x .
                                                            λ k
                     2 . For a real root λ k of multiplicity r, there are corresponding r eigenfunctions
                      ◦
                                y k1 (x)= x ,  y k2 (x)= x λ k  ln x,  ... ,  y kr (x)= x λ k  ln r–1  x.
                                        λ k
                     3 . For a complex (simple) root λ k = α k + iβ k of equation (1), there is a corresponding pair
                      ◦
                     of eigenfunctions
                                                            (2)
                                     (1)
                                    y (x)= x α k  cos(β k ln x),  y (x)= x α k  sin(β k ln x).
                                     k                      k
                     4 . For a complex root λ k = α k + iβ k of multiplicity r, there are corresponding r pairs of
                      ◦
                     eigenfunctions
                               (1)                          (2)
                              y (x)= x α k  cos(β k ln x),  y (x)= x α k  sin(β k ln x),
                               k1                           k1
                               (1)
                                                            (2)
                              y (x)= x α k  ln x cos(β k ln x),  y (x)= x α k  ln x sin(β k ln x),
                               k2                           k2
                              ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅   ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
                                                            (2)
                               (1)
                              y (x)= x α k  ln r–1  x cos(β k ln x),  y (x)= x α k  ln r–1  x sin(β k ln x).
                               kr                           kr
                        The general solution is the linear combination (with arbitrary constants) of the eigenfunc-
                     tions of the homogeneous integral equation.
                             b

                                             β
               60.   y(x)+    f(t)y(ξ) dt = Ax ,   ξ = xϕ(t).
                            a
                     A solution:
                                                                b
                                             A   β                      β
                                       y(x)=   x ,    B =1 +    f(t)[ϕ(t)] dt.
                                             B
                                                              a
                     It is assumed that B ≠ 0. A linear combination of eigenfunctions of the corresponding
                     homogeneous equation (see 4.9.59) can be added to this solution.
                             b

               61.   y(x)+    f(t)y(ξ) dt = g(x),  ξ = xϕ(t).
                            a
                                  n
                                       k
                      ◦
                     1 .For g(x)=   A k x , a solution of the equation has the form
                                 k=0
                                            n                      b

                                              A k  k                       k
                                     y(x)=       x ,    B k =1 +   f(t)[ϕ(t)] dt.           (1)
                                              B k                a
                                           k=0
                                     n
                                           k
                     2 .For g(x)=ln x  A k x , a solution has the form
                      ◦
                                    k=0
                                                      n         n

                                                            k
                                                                      k
                                            y(x)=ln x   B k x +   C k x ,                   (2)
                                                     k=0       k=0
                     where the constants B k and C k can be found by the method of undetermined coefficients.
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 333
   349   350   351   352   353   354   355   356   357   358   359