Page 359 - Handbook Of Integral Equations
P. 359

x

                                              √
               13.      y(t)y(x – t) dt = A sin(λ x ).
                      0
                                   √
                     Solutions: y = ± Aπ 1/4 –7/8 3/4 –1/8 J –1/4 λ  1  x , where J –1/4 is the Bessel function.
                                              λ
                                                 x
                                          2
                                                              2
                         x
                                         2 µx
               14.      y(t)y(x – t) dt = A e  cosh(λx).
                      0
                                      A   µx  d     x  I 0 (λt) dt
                     Solutions: y(x)= ± √ e         √     , where I 0 is the modified Bessel function.
                                       π    dx  0    x – t
                         x
               15.      y(t)y(x – t) dt = Ae µx  sinh(λx).
                      0
                                   √
                                        µx
                     Solutions: y = ± Aλ e I 0 (λx), where I 0 is the modified Bessel function.
                       x

                                         2 µx
               16.      y(t)y(x – t) dt = A e  cos(λx).
                      0
                                      A   µx  d     x  J 0 (λt) dt
                     Solutions: y(x)= ± √ e         √     , where J 0 is the Bessel function.
                                       π    dx       x – t
                                                0
                       x

               17.      y(t)y(x – t) dt = Ae µx  sin(λx).
                      0
                                   √
                                        µx
                     Solutions: y = ± Aλ e J 0 (λx), where J 0 is the Bessel function.
                                              x
                 5.1-2. Equations of the Form  K(x, t)y(t)y(x – t) dt = F (x)
                                            0
                       x

                                            λ
                         k
               18.      t y(t)y(x – t) dt = Ax ,  A >0.
                      0
                     Solutions:
                                                                  1/2

                                                     AΓ(λ +1)         λ–k–1
                                        y(x)= ±      λ+1+k       λ+1–k     x  2  ,
                                                 Γ       Γ
                                                     2       2
                     where Γ(z) is the gamma function.
                       x

                         k
               19.      t y(t)y(x – t) dt = Ae λx .
                      0
                     Solutions:
                                                              
 1/2
                                                       A           – k+1  λx
                                         y(x)= ±     k+1       1–k     x  2 e ,
                                                  Γ     Γ
                                                     2     2
                     where Γ(z) is the gamma function.
                         x
                                            µ λx
                         k
               20.      t y(t)y(x – t) dt = Ax e  .
                      0
                     Solutions:
                                                                 1/2
                                                                
   µ–k–1
                                                   AΓ(µ +1)               λx
                                       y(x)= ±      µ+k+1       µ–k+1     x  2  e ,
                                                Γ      Γ
                                                    2       2
                     where Γ(z) is the gamma function.
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 339
   354   355   356   357   358   359   360   361   362   363   364