Page 361 - Handbook Of Integral Equations
P. 361

x

               28.      y(t)y(ax – t) dt = Ae λx ,  a ≥ 1.
                      0
                     Solutions:
                                                                     1
                                              A exp(λx/a)               dz
                                     y(x)= ±        √     ,    I =   √        .
                                               I     x             0   z(a – z)
                       x

                                           µ λx
               29.      y(t)y(ax – t) dt = Ax e  ,   a ≥ 1.
                      0
                     Solutions:
                                                                    1
                                         A   µ–1                     µ–1      µ–1
                                y(x)= ±     x 2 exp(λx/a),   I =    z 2 (a – z) 2 dz.
                                          I                       0

                                                  x
                                                           2
                 5.1-4. Equations of the Form y(x)+  K(x, t)y (t) dt = F (x)
                                                  a
                                x
                                 2
               30.   y(x)+ A    y (t) dt = Bx + C.
                              a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                      ◦
                     1 . Solution with AB >0:

                                  (k + y a ) exp[2Ak(x – a)] + y a – k  B
                           y(x)= k                            ,   k =     ,  y a = aB + C.
                                  (k + y a ) exp[2Ak(x – a)] – y a + k  A
                     2 . Solution with AB <0:
                      ◦


                                                       y a            B
                             y(x)= k tan Ak(a – x) + arctan  ,  k =  –  ,  y a = aB + C.
                                                        k             A
                     3 . Solution with B =0:
                      ◦
                                                           C
                                                y(x)=             .
                                                      AC(x – a)+1
                                x
                                                 2
                                      2
               31.   y(x)+ k   (x – t)y (t) dt = Ax + Bx + C.
                             a
                                                                2
                     This is a special case of equation 5.8.5 with f(y)= ky .
                        Solution in an implicit form:
                                       y

                                                        2       –1/2
                                        4Au – 2kF(u)+ B – 4AC      du = ±(x – a),
                                      y 0

                                                      3
                                                  3
                                                                 2
                                        F(u)=  1    u – y ,  y 0 = Aa + Ba + C.
                                               3      0
                                x
                                 λ 2
               32.   y(x)+ A    t y (t) dt = Bx λ+1  + C.
                              a
                                                                  2
                     This is a special case of equation 5.8.6 with f(y)= Ay . By differentiation, this integral
                     equation can be reduced to a separable ordinary differential equation.
                        Solution in an implicit form:
                                      y
                                             du
                              (λ +1)                 + x λ+1  – a λ+1  =0,  y a = Ba λ+1  + C.
                                          2
                                       Au – B(λ +1)
                                     y a
                 © 1998 by CRC Press LLC







               © 1998 by CRC Press LLC
                                                                                                             Page 341
   356   357   358   359   360   361   362   363   364   365   366