Page 365 - Handbook Of Integral Equations
P. 365

x
                            t
                                                 µ λx
               5.       f      y(t)y(x – t) dt = Ax e  .
                           x
                      0
                     Solutions:
                                                               1
                                           A  µ–1  λx               µ–1     µ–1
                                 y(x)= ±     x 2 e ,     I =   f(z)z 2 (1 – z) 2 dz.
                                           I                 0
                         x     t
                                                   λ
               6.       f      y(t)y(ax + bt) dt = Ax .
                      0    x
                     Solutions:
                                                             1
                                            A  λ–1                λ–1      λ–1
                                  y(x)= ±     x 2 ,    I =   f(z)z 2 (a + bz) 2 dz.
                                            I              0
                         x     t
               7.       f      y(t)y(ax – t) dt = Ae λx ,  a ≥ 1.
                      0    x
                     Solutions:
                                                                     1
                                              A exp(λx/a)             f(z) dz
                                     y(x)= ±        √     ,    I =   √        .
                                               I     x             0   z(a – z)
                       x
                            t
                                                  µ λx
               8.       f      y(t)y(ax – t) dt = Ax e  ,  a ≥ 1.
                      0    x
                     Solutions:
                                                                  1
                                        A  µ–1                         µ–1     µ–1
                              y(x)= ±     x 2 exp(λx/a),    I =   f(z)z 2 (a – z) 2 dz.
                                        I
                                                                0
                                                    x      2
                 5.2-2. Equations of the Form y(x)+  K(x, t)y (t) dt = F (x)
                                                  a
                             x

                                   2
               9.    y(x)+    f(t)y (t) dt = A.
                            a
                     Solution:
                                                             x     
 –1
                                             y(x)= A 1+ A     f(t) dt  .
                                                           a
                             x

                                        2
               10.   y(x)+    e λ(x–t) g(t)y (t) dt = f(x).
                            a
                     Differentiating the equation with respect to x yields
                                                      x

                                               2
                                                                2


                                       y + g(x)y + λ   e λ(x–t) g(t)y (t) dt = f (x).       (1)
                                        x                               x
                                                     a
                     Eliminating the integral term from (1) with the aid of the original equation, we arrive at a
                     Riccati ordinary differential equation,
                                                   2

                                          y + g(x)y – λy + λf(x) – f (x)=0,                 (2)

                                                                 x
                                           x
                     under the initial condition y(a)= f(a). Equation (2) can be reduced to a second-order linear
                     ordinary differential equation. For the exact solutions of equation (2) with various specific
                     functions f and g, see, for example, E. Kamke (1977) and A. D. Polyanin and V. F. Zaitsev
                     (1995).
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 345
   360   361   362   363   364   365   366   367   368   369   370