Page 370 - Handbook Of Integral Equations
P. 370

x
                                  t
                                                  2
               16.   y(x)+    f        y(t) dt = Ax .
                                 x
                            0
                                      2 2
                     Solutions: y k (x)= B x , where B k (k = 1, 2) are the roots of the quadratic equations
                                      k
                                                                  1
                                           2
                                         B ± IB – A =0,     I =   zf(z) dz.
                                                                0
                             x
                                   t
                                        k
                               a
               17.   y(x) –   t f     y (t) dt =0,    k ≠ 1.
                            0      x
                     A solution:
                                                                1

                                                1+a               a+k
                                       y(x)= Ax 1–k ,   A 1–k  =  z 1–k f(z) dz.
                                                               0
                             ∞

                                             k
               18.   y(x) –    e λt+βx f(x – t)y (t) dt =0,  k ≠ 1.
                            x
                     A solution:
                                          λ + β         1–k          λ + βk
                                                                ∞
                              y(x)= A exp      x ,    A    =     exp       z f(–z) dz.
                                          1 – k               0       1 – k
                               x
                                             k
               19.   y(x) –    e λt+βx f(x – t)y (t) dt =0,  k ≠ 1.
                            –∞
                     A solution:

                                          λ + β         1–k           λ + βk
                                                                ∞
                              y(x)= A exp      x ,    A    =     exp –      z f(z) dz.
                                          1 – k                        1 – k
                                                              0
               5.4. Equations With Exponential Nonlinearity

                 5.4-1. Equations Containing Arbitrary Parameters


                                x
               1.    y(x)+ A    exp[λy(t)] dt = B.
                              a
                     Solution:
                                                   1              –Bλ
                                            y(x)= –  ln Aλ(x – a)+ e  .
                                                   λ

                              x

               2.    y(x)+ A    exp[λy(t)] dt = Bx + C.
                              a
                     For B = 0, see equation 5.4.1.
                        Solution with B ≠ 0:


                                        1    A          A     λB(a–x)
                                 y(x)= –  ln   + e –λy 0  –  e     ,    y 0 = aB + C.
                                        λ   B           B



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 350
   365   366   367   368   369   370   371   372   373   374   375