Page 373 - Handbook Of Integral Equations
P. 373

1      x     t
               16.   y(x)+      f      exp[λy(t)] dt = A.
                           x  0    x
                     A solution: y(x)= β, where β is a root of the transcendental equation

                                                                   1
                                          β + Ie λβ  – A =0,  I =  f(z) dz.
                                                                 0


               5.5. Equations With Hyperbolic Nonlinearity

                 5.5-1. Integrands With Nonlinearity of the Form cosh[βy(t)]

                              x

               1.    y(x)+ k   cosh[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k cosh(βy).
                                x
               2.    y(x)+ k   cosh[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k cosh(βy).

                              x

                                                       2
               3.    y(x)+ k   (x – t) cosh[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k cosh(βy).
                              x

                                λ
               4.    y(x)+ k   t cosh[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k cosh(βy).
                             x

               5.    y(x)+    g(t) cosh[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = cosh(βy).
                             x
                               cosh[βy(t)]
               6.    y(x)+               dt = A.
                                ax + bt
                            0
                     This is a special case of equation 5.8.8 with f(y) = cosh(βy).
                             x
                               cosh[βy(t)]
               7.    y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = cosh(βy).
                              x

               8.    y(x)+ k   e λt  cosh[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k cosh(βy).

                                x
               9.    y(x)+ k   e λ(x–t)  cosh[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k cosh(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 353
   368   369   370   371   372   373   374   375   376   377   378