Page 378 - Handbook Of Integral Equations
P. 378

x

               54.   y(x)+ k   sinh[λ(x – t)] coth[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k coth(βy).

                                x
               55.   y(x)+ k   sinh[λ(x – t)] coth[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k coth(βy).

                              x

               56.   y(x)+ k   sin[λ(x – t)] coth[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k coth(βy).


               5.6. Equations With Logarithmic Nonlinearity

                 5.6-1. Integrands Containing Power-Law Functions of x and t

                              x

               1.    y(x)+ k   ln[λy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k ln(λy).

                              x

               2.    y(x)+ k   ln[λy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k ln(λy).

                                x
                                                     2
               3.    y(x)+ k   (x – t) ln[λy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k ln(λy).
                              x

                                λ
               4.    y(x)+ k   t ln[µy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k ln(µy).
                             x
                               ln[λy(t)]

               5.    y(x)+             dt = A.
                               ax + bt
                            0
                     This is a special case of equation 5.8.8 with f(y) = ln(λy).
                             x
                                ln[λy(t)]

               6.    y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = ln(λy).
                 5.6-2. Integrands Containing Exponential Functions of x and t

                              x

               7.    y(x)+ k   e λt  ln[µy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k ln(µy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 358
   373   374   375   376   377   378   379   380   381   382   383