Page 382 - Handbook Of Integral Equations
P. 382

x

               26.   y(x)+ k   sinh[λ(x – t)] sin[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k sin(βy).
                              x

               27.   y(x)+ k   sinh[λ(x – t)] sin[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k sin(βy).
                                x
               28.   y(x)+ k   sin[λ(x – t)] sin[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k sin(βy).


                 5.7-3. Integrands With Nonlinearity of the Form tan[βy(t)]


                                x
               29.   y(x)+ k   tan[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k tan(βy).
                                x
               30.   y(x)+ k   tan[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k tan(βy).

                              x

                                                      2
               31.   y(x)+ k   (x – t) tan[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k tan(βy).
                                x
                                λ
               32.   y(x)+ k   t tan[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k tan(βy).
                             x

               33.   y(x)+    g(t) tan[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = tan(βy).

                               x  tan[βy(t)]
               34.   y(x)+              dt = A.
                            0   ax + bt
                     This is a special case of equation 5.8.8 with f(y) = tan(βy).

                             x
                               tan[βy(t)]

               35.   y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = tan(βy).
                              x

               36.   y(x)+ k   e λt  tan[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k tan(βy).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 362
   377   378   379   380   381   382   383   384   385   386   387