Page 387 - Handbook Of Integral Equations
P. 387

x

                                                        λx     –λx
               14.   y(x)+    sinh[λ(x – t)]f y(t) dt = Ae  + Be   + C.
                            a
                     1 . This is a special case of equation 5.8.23. The solution of this integral equation is
                      ◦
                     determined by the solution of the second-order autonomous ordinary differential equation
                                                          2
                                                                2
                                              y     + λf(y) – λ y + λ C =0
                                               xx
                     under the initial conditions

                                  y(a)= Ae λa  + Be –λa  + C,  y (a)= Aλe λa  – Bλe –λa .
                                                             x
                     2 . Solution in an implicit form:
                      ◦
                                 y

                                     2 2   2             2  2         –1/2
                                   λ u – 2λ Cu – 2λF(u)+ λ (C – 4AB)    du = ±(x – a),
                                y 0
                                                u
                                       F(u)=    f(t) dt,  y 0 = Ae λa  + Be –λa  + C.
                                              y 0
                             x


               15.   y(x)+    sinh[λ(x – t)]f y(t) dt = A cosh(λx)+ B.
                            a
                     This is a special case of equation 5.8.14.
                        Solution in an implicit form:
                                   y
                                      2 2   2             2  2    2    –1/2
                                    λ u – 2λ Bu – 2λF(u)+ λ (B – A )   du = ±(x – a),
                                 y 0
                                                u

                                        F(u)=     f(t) dt,  y 0 = A cosh(λa)+ B.
                                               y 0
                             x


               16.   y(x)+    sinh[λ(x – t)]f y(t) dt = A sinh(λx)+ B.
                            a
                     This is a special case of equation 5.8.23.
                        Solution in an implicit form:
                                   y
                                      2 2  2              2  2    2    –1/2
                                    λ u – 2λ Bu – 2λF(u)+ λ (A + B )   du = ±(x – a),
                                 y 0
                                                u

                                        F(u)=     f(t) dt,  y 0 = A sinh(λa)+ B.
                                                y 0
                               x

               17.   y(x)+    sin[λ(x – t)]f y(t) dt = A sin(λx)+ B cos(λx)+ C.
                            a
                     1 . This is a special case of equation 5.8.25. The solution of this integral equation is
                      ◦
                     determined by the solution of the second-order autonomous ordinary differential equation
                                                                2
                                                           2
                                              y     + λf(y)+ λ y – λ C =0
                                               xx
                     under the initial conditions
                            y(a)= A sin(λa)+ B cos(λa)+ C,  y (a)= Aλ cos(λa) – Bλ sin(λa).

                                                             x
                      ◦
                     2 . Solution in an implicit form:
                                      y
                                         2   2 2    2             –1/2
                                       λ D – λ u +2λ Cu – 2λF(u)    du = ±(x – a),
                                    y 0
                                                                                 u

                                                                 2
                                                                     2
                                                            2
                           y 0 = A sin(λa)+ B cos(λa)+ C,  D = A + B – C ,  F(u)=  f(t) dt.
                                                                                y 0
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 367
   382   383   384   385   386   387   388   389   390   391   392