Page 383 - Handbook Of Integral Equations
P. 383

x

               37.   y(x)+ k   e λ(x–t)  tan[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k tan(βy).

                                x
               38.   y(x)+ k   e λ(x–t)  tan[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k tan(βy).
                              x

               39.   y(x)+ k   sinh[λ(x – t)] tan[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k tan(βy).

                                x
               40.   y(x)+ k   sinh[λ(x – t)] tan[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k tan(βy).

                                x
               41.   y(x)+ k   sinh[λ(x – t)] tan[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k tan(βy).
                              x

               42.   y(x)+ k   sin[λ(x – t)] tan[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k tan(βy).



                 5.7-4. Integrands With Nonlinearity of the Form cot[βy(t)]

                              x

               43.   y(x)+ k   cot[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k cot(βy).
                                x
               44.   y(x)+ k   cot[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k cot(βy).

                              x

                                                     2
               45.   y(x)+ k   (x – t) cot[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k cot(βy).
                                x
                                λ
               46.   y(x)+ k   t cot[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k cot(βy).
                             x

               47.   y(x)+    g(t) cot[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = cot(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 363
   378   379   380   381   382   383   384   385   386   387   388