Page 386 - Handbook Of Integral Equations
P. 386

x


               7.    y(x)+    g(t)f y(t) dt = A.
                            a
                     Solution in an implicit form:
                                                   du
                                                  y        x
                                                       +    g(t) dt =0.
                                                  f(u)
                                                A        a

                               x  f y(t)
               8.    y(x)+            dt = A.
                            0  ax + bt
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                   b

                                             ln 1+    f(λ)+ bλ – Ab =0.
                                                   a
                             x
                                f y(t)
               9.    y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                                 1
                                                                     dz
                                        kf(λ)+ λ – A =0,    k =   √       .
                                                                0   a + bz 2
                              x

                                        dt
               10.   y(x)+ x    f y(t)       = A.
                                        2
                             0        x + t 2
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                      1
                                                   λ + πf(λ)= A.
                                                      4
                             x

                               λt
               11.   y(x)+    e f y(t) dt = Be  λx  + C.
                            a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:
                                        y   du
                                   λ              + e λx  – e λa  =0,  y 0 = Be λa  + C.
                                         f(u) – Bλ
                                      y 0
                               x


               12.   y(x)+    e λ(x–t) f y(t) dt = A.
                            a
                     Solution in an implicit form:
                                                y
                                                       du

                                                               = x – a.
                                                  λu – f(u) – λA
                                               A
                               x


               13.   y(x)+    e λ(x–t) f y(t) dt = Ae λx  + B.
                            a
                     Solution in an implicit form:
                                       y
                                              du                       λa

                                                      = x – a,   y 0 = Ae  + B.
                                         λu – f(u) – λB
                                       y 0
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 366
   381   382   383   384   385   386   387   388   389   390   391