Page 381 - Handbook Of Integral Equations
P. 381

5.7-2. Integrands With Nonlinearity of the Form sin[βy(t)]

                              x

               15.   y(x)+ k   sin[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k sin(βy).

                              x

               16.   y(x)+ k   sin[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k sin(βy).

                              x

                                                     2
               17.   y(x)+ k   (x – t) sin[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k sin(βy).
                                x
                                λ
               18.   y(x)+ k   t sin[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k sin(βy).

                               x
               19.   y(x)+    g(t) sin[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = sin(βy).
                             x
                               sin[βy(t)]
               20.   y(x)+              dt = A.
                            0   ax + bt
                     This is a special case of equation 5.8.8 with f(y) = sin(βy).

                               x  sin[βy(t)]
               21.   y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = sin(βy).

                              x

               22.   y(x)+ k   e λt  sin[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k sin(βy).

                              x

               23.   y(x)+ k   e λ(x–t)  sin[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k sin(βy).

                                x
               24.   y(x)+ k   e λ(x–t)  sin[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k sin(βy).
                                x
               25.   y(x)+ k   sinh[λ(x – t)] sin[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k sin(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 361
   376   377   378   379   380   381   382   383   384   385   386