Page 384 - Handbook Of Integral Equations
P. 384

x
                               cot[βy(t)]
               48.   y(x)+              dt = A.
                                ax + bt
                            0
                     This is a special case of equation 5.8.8 with f(y) = cot(βy).
                               x  cot[βy(t)]
               49.   y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = cot(βy).
                                x
               50.   y(x)+ k   e λt  cot[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k cot(βy).

                                x
               51.   y(x)+ k   e λ(x–t)  cot[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k cot(βy).

                              x

               52.   y(x)+ k   e λ(x–t)  cot[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k cot(βy).

                              x

               53.   y(x)+ k   sinh[λ(x – t)] cot[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k cot(βy).
                              x

               54.   y(x)+ k   sinh[λ(x – t)] cot[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k cot(βy).

                                x
               55.   y(x)+ k   sinh[λ(x – t)] cot[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k cot(βy).
                                x
               56.   y(x)+ k   sin[λ(x – t)] cot[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k cot(βy).


               5.8. Equations With Nonlinearity of General Form

                                            x

                 5.8-1. Equations of the Form  G(···) dt = F (x)
                                            a
                         x

               1.       K(x, t)ϕ y(t) dt = f(x).
                      a

                     The substitution w(x)= ϕ y(x) leads to the linear equation
                                                  x
                                                  K(x, t)w(t) dt = f(x).
                                                a



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 364
   379   380   381   382   383   384   385   386   387   388   389