Page 375 - Handbook Of Integral Equations
P. 375

x
                               sinh[βy(t)]
               21.   y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = sinh(βy).
                              x

               22.   y(x)+ k   e λt  sinh[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k sinh(βy).
                                x
               23.   y(x)+ k   e λ(x–t)  sinh[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k sinh(βy).

                                x
               24.   y(x)+ k   e λ(x–t)  sinh[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k sinh(βy).

                              x

               25.   y(x)+ k   sinh[λ(x – t)] sinh[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k sinh(βy).
                                x
               26.   y(x)+ k   sinh[λ(x – t)] sinh[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k sinh(βy).

                              x

               27.   y(x)+ k   sinh[λ(x – t)] sinh[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k sinh(βy).

                                x
               28.   y(x)+ k   sin[λ(x – t)] sinh[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k sinh(βy).


                 5.5-3. Integrands With Nonlinearity of the Form tanh[βy(t)]

                              x

               29.   y(x)+ k   tanh[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k tanh(βy).

                                x
               30.   y(x)+ k   tanh[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k tanh(βy).
                              x

                                                       2
               31.   y(x)+ k   (x – t) tanh[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k tanh(βy).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 355
   370   371   372   373   374   375   376   377   378   379   380