Page 357 - Handbook Of Integral Equations
P. 357

Chapter 5


               Nonlinear Equations

               With Variable Limit of Integration






                 Notation: f, g, h, and ϕ are arbitrary functions of an argument specified in the parentheses (the
               argument can depend on t, x, and y); A, B, C, a, b, c, k, β, λ, and µ are arbitrary parameters.


               5.1. Equations With Quadratic Nonlinearity That Contain
                      Arbitrary Parameters

                                            x

                 5.1-1. Equations of the Form  y(t)y(x – t) dt = F (x)
                                            0
                       x

               1.       y(t)y(x – t) dt = Ax + B,  A, B >0.
                      0
                     Solutions:

                                         √      1        A       A        A
                                  y(x)= ± B √      exp –   x +      erf     x   ,
                                                πx       B       B        B
                                      z
                                  2          2

                     where erf z = √    exp –t  dt is the error function.
                                  π  0
                         x
                                         2
                                           λ
               2.       y(t)y(x – t) dt = A x .
                      0
                     Solutions:                        √
                                                         Γ(λ +1)  λ–1
                                              y(x)= ±A          x 2 ,
                                                        Γ  λ+1
                                                            2
                     where Γ(z) is the gamma function.
                       x

                                                  λ
               3.       y(t)y(x – t) dt = Ax λ–1  + Bx ,  λ >0.
                      0
                     Solutions:          √
                                          AΓ(λ)  λ–2       B       λ +1 λ    B
                                 y(x)= ±        x 2 exp –λ   x Φ       ,  ; λ  x ,
                                         Γ(λ/2)            A        2    2   A
                     where Φ(a, c; x) is the degenerate hypergeometric function (Kummer’s function).
                       x

                                         2 λx
               4.       y(t)y(x – t) dt = A e  .
                      0
                                       A   λx
                     Solutions: y(x)= ± √  e .
                                       πx
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 337
   352   353   354   355   356   357   358   359   360   361   362