Page 444 - Handbook Of Integral Equations
P. 444

b

               70.   y(x)+    y(ξ)f t, y(t) dt = g(x),  ξ = x + ϕ(t).
                            a
                     1 .For g(x)=  n    A k exp(λ k x) the equation has a solution of the form
                      ◦
                                 k=1
                                                      n

                                                y(x)=    B k exp(λ k x),
                                                      k=1

                     where the constants B k are determined from the nonlinear algebraic (or transcendental) system

                                                  %
                                        B k + B k F k (B) – A k =0,  k =1, ... , n,
                                                             n
                                                       b
                           %
                                                %


                           B = {B 1 , ... , B n },  F k (B)=  f t,  B m exp(λ m t) exp λ k ϕ(t) dt.
                                                     a
                                                            m=1
                     2 . Solutions for some other functions g(x) can be found in items 2 –11 of equation 6.8.66.
                                                                              ◦
                                                                          ◦
                      ◦
















































                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 424
   439   440   441   442   443   444   445   446   447   448   449