Page 449 - Handbook Of Integral Equations
P. 449

Fig. 1. Principal scheme of applying integral transforms for solving integral equations

                 7.1-5. The Jordan Lemma
               If a function f(z) is continuous in the domain |z|≥ R 0 ,Im z ≥ α, where α is a chosen real number,
               and if lim f(z) = 0, then
                    z→∞

                                             lim     e iλz f(z) dz =0
                                            R→∞
                                                  C R
               for any λ > 0, where C R is the arc of the circle |z| = R that lies in this domain.
                •
                 References for Section 7.1: A. G. Sveshnikov and A. N. Tikhonov (1970), M. L. Krasnov, A. I. Kiselev, and
               G. I. Makarenko (1971).

               7.2. The Laplace Transform

                 7.2-1. Definition. The Inversion Formula
               The Laplace transform of an arbitrary (complex-valued) function f(x) of a real variable x (x ≥ 0) is
               defined by

                                                     ∞
                                              ˜
                                             f(p)=     e –px f(x) dx,                       (1)
                                                    0
               where p = s + iσ is a complex variable.


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 430
   444   445   446   447   448   449   450   451   452   453   454