Page 452 - Handbook Of Integral Equations
P. 452

TABLE 1
                                      Main properties of the Laplace transform


                No         Function             Laplace Transform             Operation
                                                   ˜
                                                          ˜
                 1      af 1 (x)+ bf 2 (x)       af 1 (p)+ bf 2 (p)           Linearity
                                                      ˜
                 2       f(x/a), a >0                af(ap)                    Scaling
                           f(x – a),                 –ap ˜
                 3                                  e  f(p)              Shift of the argument
                       f(ξ) ≡ 0 for ξ <0
                       n
                                                      n ˜ (n)
                 4    x f(x); n =1, 2, ...        (–1) f p  (p)             Differentiation
                                                                           of the transform
                            1                         ∞  ˜                   Integration
                 5            f(x)                    f(q) dq
                            x                       p                      of the transform
                                                                               Shift in
                            ax
                                                     ˜
                 6         e f(x)                   f(p – a)
                                                                           the complex plane
                                                    ˜

                 7          f (x)                 pf(p) – f(+0)             Differentiation
                             x
                                                     n    n–k (k–1)
                                              n ˜
                             (n)
                 8          f x  (x)         p f(p) –  p  f x  (+0)         Differentiation
                                                    k=1
                                                	  d  
 m
                                                         n ˜
                        m (n)
                 9     x f x  (x), m ≥ n         –      p f(p)              Differentiation
                                                   dp
                      d n     m                    m n  d m  ˜
                 10       x f(x) , m ≥ n        (–1) p   m  f(p)            Differentiation
                     dx n                              dp
                                                      ˜
                            x                         f(p)

                 11          f(t) dt                                         Integration
                           0                           p

                        x
                                                    ˜
                                                        ˜
                 12       f 1 (t)f 2 (x – t) dt    f 1 (p)f 2 (p)            Convolution
                        0
               7.3. The Mellin Transform
                 7.3-1. Definition. The Inversion Formula
               Suppose that a function f(x)isdefined for positive x and satisfies the conditions

                                    1                      ∞
                                     |f(x)|x σ 1 –1  dx < ∞,  |f(x)|x σ 2 –1  dx < ∞
                                   0                      1
               for some real numbers σ 1 and σ 2 , σ 1 < σ 2 .
                   The Mellin transform of f(x)isdefined by

                                                   ∞
                                            ˆ
                                           f(s)=     f(x)x s–1  dx,                         (1)
                                                  0
               where s = σ + iτ is a complex variable (σ 1 < σ < σ 2 ).
                   For brevity, we rewrite formula (1) as follows:
                                   ˆ
                                                            ˆ
                                   f(s)= M{f(x)},    or    f(s)= M{f(x), s}.
                     ˆ
               Given f(s), the function can be found by means of the inverse Mellin transform
                                                σ+i∞
                                          1             –s
                                                    ˆ
                                   f(x)=           f(s)x ds,    (σ 1 < σ < σ 2 )            (2)
                                         2πi
                                              σ–i∞
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 433
   447   448   449   450   451   452   453   454   455   456   457