Page 596 - Handbook Of Integral Equations
P. 596

and it follows from formulas (5)–(7) that

                                              n                    n
                                      1     1           kπx     1            mπt
                           K (n) (x, t)=  a 00 +  a k0 cos    +      a 0m cos
                                      4     2             l     2             l
                                              k=1                 m=1
                                              n  n
                                                            kπx       mπt
                                           +       a km cos      cos       ,
                                                             l         l
                                             k=1 m=1
               where
                                           b     b
                                      4                  kπx       mπt
                                a km =        K(x, t) cos      cos       dx dt.             (8)
                                      l 2                 l          l
                                         a  a
                   One can also use other methods of interpolating and approximating the kernel K(x, t).

                 11.13-2. The Approximate Solution

               If K (n) (x, t) is an approximate degenerate kernel for a given exact kernel K(x, t) and if a func-
               tion f n (x) is close to f(x), then the solution y n (x) of the integral equation

                                                 b
                                        y n (x) –  K (n) (x, t)y n (t) dt = f n (x)         (9)
                                               a

               can be regarded as an approximation to the solution y(x) of Eq. (1).
                   Assume that the following error estimates hold:

                                    b
                                    |K(x, t) – K (n) (x, t)| dt ≤ ε,  |f(x) – f n (x)|≤ δ.
                                  a

               Next, let the resolvent R n (x, t) of Eq. (9) satisfy the relation
                                                b

                                                 |R n (x, t)| dt ≤ M n
                                               a
               for a ≤ x ≤ b. Finally, assume that the following inequality holds:

                                               q = ε(1 + M n )<1.

                   In this case, Eq. (1) has a unique solution y(x) and

                                              N(1 + M n ) 2
                                |y(x) – y n (x)|≤ ε      + δ,   N = max |f(x)|.            (10)
                                                 1 – q              a≤x≤b

                   Example. Let us find an approximate solution of the equation
                                                   1/2

                                                        2 2
                                             y(x) –  e –x t  y(t) dt =1.                   (11)
                                                  0
                   Applying the expansion in a double Taylor series, we replace the kernel
                                                          2 2
                                                 K(x, t)= e –x t
               by the degenerate kernel
                                                        2 2
                                                              4 4
                                             K (2) (x, t)=1 – x t +  1  x t .
                                                            2

                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 579
   591   592   593   594   595   596   597   598   599   600   601