Page 685 - Handbook Of Integral Equations
P. 685

◦
               2 . When applied to the Volterra equation of the second kind in the Hammerstein form
                                               x


                                        y(x) –  Q(x, t)Φ t, y(t) dt = f(x),                (31)
                                              a
               the main relations of the quadrature method have the form (x 1 = a)
                                              i

                                y 1 = f 1 ,  y i –  A ij Q ij Φ j (y j )= f i ,  i =2, ... , n,  (32)
                                             j=1
               where Q ij = Q(x i , t j ) and Φ j (y j )= Φ(t j , y j ). These relations lead to the sequence of nonlinear
               recurrent equations
                                                       i–1

                          y 1 = f 1 ,  y i – A ii Q ii Φ i (y i )= f i +  A ij Q ij Φ j (y j ),  i =2, ... , n,  (33)
                                                       j=1
               whose solutions give approximate values of the desired function.
                   Example 5. In the solution of the equation
                                             x

                                       y(x) –  e –(x–t) 2  –x  0 ≤ x ≤ 0.1,
                                                  y (t) dt = e ,
                                            0

                                         2
                                                    –x

               where Q(x, t)= e –(x–t) , Φ t, y(t) = y (t), and f(x)= e , the approximate expression has the form
                                                  x i

                                                         y (t) dt = e
                                           y(x i ) –  e –(x i –t) 2  –x i .
                                                 0
               On applying the trapezoidal rule to evaluate the integral (with step h = 0.02) and finding the solution at the nodes x i =0,
               0.02, 0.04, 0.06, 0.08, 0.1, we obtain, according to (33), the following system of computational relations:
                                                       i–1
                                                 2
                                                                2
                                 y 1 = f 1 ,  y i – 0.01 Q ii y i = f i +     0.02 Q ij y j ,  i =2, ... ,6.
                                                       j=1
               Thus, to find an approximate solution, we must solve a quadratic equation for each value y i , which makes it possible to write
               out the answer
                                                    i–1        1/2


                                                             2
                                 y i =50 ± 50 1 – 0.04 f i +  0.02 Q ij y j  ,  i =2, ... ,6.
                                                   j=1
                •
                 References for Section 14.2: M. L. Krasnov, A. I. Kiselev, and G. I. Makarenko (1971), P. P. Zabreyko, A. I. Koshelev,
               et al. (1975), A. F. Verlan’ and V. S. Sizikov (1986).
               14.3. Equations With Constant Integration Limits
                 14.3-1. Nonlinear Equations With Degenerate Kernels
               1 . Consider a Hammerstein equation of the second kind in the canonical form
                ◦
                                                  b


                                          y(x)=    Q(x, t)Φ t, y(t) dt,                     (1)
                                                 a
               where Q(x, t) and Φ(t, y) are given functions and y(x) is the unknown function.
                   Let the kernel Q(x, t) be degenerate, i.e.,
                                                     m

                                             Q(x, t)=   g k (x)h k (t).                     (2)
                                                     k=1



                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 668
   680   681   682   683   684   685   686   687   688   689   690