Page 196 - Handbook of Battery Materials
P. 196
References 165
Under typical operating pressures (30–50 atm), a nickel–hydrogen battery will
lose 50% of its capacity in a week. The self-discharge rate is about five times
that encountered in sealed nickel–cadmium batteries, where the rate-determining
step is oxygen evolution [100]. Tsenter and Sluzhevskii [101] developed a set of
kinetic equations to describe the self-discharge process; in their model its rate
depends on the hydrogen pressure and the amount of undischarged NiOOH in
the cell. Experimental results of Srinivasan and co-workers confirm many aspects
of this model [102]. They used a combination of microcalorimetry, open-circuit
voltage measurements, and capacity measurements to study the problem. By doing
measurements on the active material and substrate, separately and combined, they
were able to establish that hydrogen oxidation occurs predominantly on the charged
active material with simultaneous reduction of the oxide.
References
1. Falk, S.U. and Salkind, A.J. (1969) Al- B.E. Conway), Plenum Press,
kaline Storage Batteries, John Wiley & New York, pp. 29–64.
Sons, Inc., New York. 10. Zimmerman, A.H. (1994) in Proceed-
2. Milner, P.C. and Thomas, U.B. (1967) ings of the Symposium on Hydrogen
in Advances in Electrochemistry and and Metal Hydride Batteries (eds P.D.
Electrochemical Engineering (ed. C.W. Bennett and T. Sakai), The Electro-
Tobias), John Wiley & Sons, Inc., chemical Society, Pennington, NJ, pp.
NewYork,p.1. 268–283.
3. Briggs, G.W.D. (1974) in Electro- 11. Bode, H., Dehmelt, K., and Witte, J.
chemistry, Specialist Periodical Reports, (1966) Electrochim. Acta, 11, 1079.
Vol. 4, The Chemical Society, London, 12. Zimmerman, A.H. and Phan, A.H.
p. 33. (1994) in Proceedings of the Symposium
4. Arvia, A.J. and Posadas, D. (1975) on Hydrogen and Metal Hydride Batteries
in Encyclopedia of Electrochemistry of (eds P.D. Bennett and T. Sakai), The
the Elements, Vol. III (ed. A.J. Bard), Electrochemical Society, Pennington,
Marcel Dekker, New York, p. 212. NJ, pp. 341–352.
5. Weininger, J.L. (1982) in Proceedings of 13. Oshitani, M., Yufu, H., Takashima, K.,
the Symposium on the Nickel Electrode Tsuji, S., and Matsumaru, Y. (1989) J.
(eds R.G. Gunther and S. Gross), The Electrochem. Soc., 136, 1590.
Electrochemical Society, Pennington, 14. Ferrando, W.A. (1985) J. Electrochem.
NJ, p. 1. Soc., 132, 2417.
6. Oliva, P., Leonardi, J., Laurent, J.F., 15. Watada, H., Ohnishi, M., Harada, Y.,
Delmas, C., Bracconier, J.J., and Oshitani, M. (1990) in Proceed-
Figlarz, M., Fievet, F., and de Guibert, ings of the 25th IECEC Meeting, IEEE,
A. (1982) J. Power Sources, 8, 229. Piscataway, NJ, pp. 299–304.
7. Halpert, G. (1984) J. Power Sources, 12, 16. Oshitani, M. and Yufu, H. (1989) US
177. Patent 4 844 999.
8. Halpert, G. (1990) in Proceedings of 17. Fleischer, A. (1948) Trans. Electrochem.
the Symposium on Nickel Hydroxide Soc., 94, 289.
Electrodes (eds D.A. Corrigan and A.H. 18. Aia, M. (1966) J. Electrochem. Soc., 113,
Zimmerman), The Electrochemical 1045.
Society, Pennington, NJ, pp. 3–17. 19. McEwen, R.S. (1971) J. Phys. Chem.,
9. McBreen, J. (1990) in Modern As- 75, 1782.
pects of Electrochemistry,Vol.21(eds 20. Fievet, F. and Figlarz, M. (1975) J.
R.E. White, J.O’M. Bockris, and Catal., 39, 350.