Page 129 - Handbook of Biomechatronics
P. 129
Model-Based Control of Biomechatronic Systems 125
Mehrabi, N., McPhee, J., 2014a. In: Steering feel improvement for different driver types
using model-based control.Proceedings of the ASME 2014 International Design Engi-
neering Technical Conferences, August 17–20, Buffalo, USA.
Mehrabi, N., McPhee, J., 2014b. In: Evaluation of a musculoskeletal arm model for auto-
mobile drivers using electromyography.7th World Congress of Biomechanics, July
6–11, Boston, MA.
Mehrabi, N., Sharif Razavian, R., McPhee, J., 2014. A physics-based musculoskeletal driver
model to study steering tasks. J. Comput. Nonlinear Dyn. 10 (12), 021012.
Mehrabi, N., Sharif Razavian, R., McPhee, J., 2015a. Steering disturbance rejection using a
physics-based neuromusculoskeletal driver model. Veh. Syst. Dyn. 53 (10), 1393–1415.
Mehrabi, N., McPhee, J., Azad, N.L., 2015b. Observer-based disturbance rejection control
of electric power steering systems. Proc. IMechE D: J. Auto. Eng. 230 (7), 867–884.
Mehrabi, N., Sharif Razavian, R., Ghannadi, B., McPhee, J., 2017. Predictive simulation of
reaching moving targets using nonlinear model predictive control. Front. Comput. Neu-
rosci. 10, 143.
Neptune, R.R., Hull, M.L., 1998. Evaluation of performance criteria for simulation of sub-
maximal steady-state cycling using a forward dynamic model. J. Biomech. Eng.
120, 334–341.
Peasgood, M., Kubica, E., McPhee, J., 2006. Stabilization and energy optimization of a
dynamic walking gait simulation. ASME J. Comput. Nonlinear Dyn. 2 (1), 149–159.
Rao, A., 2009. A survey of numerical methods for optimal control. Adv. Astronaut. Sci.
135 (1), 497–528.
Rothh€amel, M., IJkema, J., Drugge, L., 2011. A method to find correlations between
steering feel and vehicle handling properties using a moving base driving simulator.
Veh. Syst. Dyn. 12 (49), 1837–1854.
Rothh€amel, M., IJkema, J., Drugge, L., 2014. Influencing driver chosen cornering speed by
means of modified steering feel. Veh. Syst. Dyn. 52(4).
Sarlegna, F.R., Pratik, K.M., 2015. The influence of visual target information on the online
control of movements. Vis. Res. 110, 144–154.
Schafer, A., Kuhl, P., Diehl, M., Schloder, J., Bock, H.G., 2007. Fast reduced multiple
shooting methods for nonlinear model predictive control. Chem. Eng. Process.
46 (11), 1200–1214.
Sha, D., Thomas, J., 2013. An optimisation-based model for full-body upright reaching
movements. Comput. Methods Biomech. Biomed. Eng. 18 (8), 847–860.
Sharif Razavian, R., Mehrabi, N., McPhee, J., 2015. A model-based approach to predict
muscle synergies using optimization: application to feedback control. Front. Comput.
Neurosci. 9.
Soechting, J., Buneo, C., Herrmann, U., Flanders, M., 1995. Moving effortlessly in three
dimensions: does donders law apply to arm movement? J. Neurosci. 1, 27–32.
Stein, R., Chong, S., Everaert, D., Rolf, R., Thompson, A., Whittaker, M., Robertson, J.,
Fung, J., Preuss, R., Momose, K., Ihashi, K., 2006. A multicenter trial of a footdrop stim-
ulator controlled by a tilt sensor. Neurorehabil. Neural Repair 20 (3), 371–379.
Tajeddin, S., Azad, N., 2017. In: Ecological cruise control of a plug-in hybrid electric vehi-
cle: a comparison of different GMRES-based nonlinear model predictive controls.
American Control Conference (ACC), Seattle, USA.
Thelen, D., 2003. Adjustment of muscle mechanics model parameters to simulate dynamic
contractions in older adults. J. Biomech. Eng. 125 (1), 70–77.
Todorov, E., 2004. Optimality principles in sensorimotor control. Nat. Neurosci. 907–915.
Todorov, E., Jordan, M.I., 2002. Optimal feedback control as a theory of motor coordina-
tion. Nat. Neurosci. 5 (11), 1226–1235.
Todorov, E., Li, W., 2005. In: A generalized iterative LQG method for locally-optimal feed-
back control of constrained nonlinear stochastic systems.American Control Conference,
Portland, Oregon.