Page 236 - Handbook of Biomechatronics
P. 236
232 Georgios A. Bertos and Evangelos G. Papadopoulos
for myoelectric prosthetic control. J. Neural Eng. 13(4), 046012. https://doi.org/
10.1088/1741-2560/13/4/046012.
Bertos, Y.A., 1999. A Microprocessor-Based E.P.P. Position Controller for Electric-
Powered Upper-Limb Prostheses (Master of Science). Northwestern University,
Evanston, IL.
Bertos, Y.A., Heckathorne, C.W., Weir, R.F., Childress, D.S., 1997. In: Microprocessor
based E.P.P. position controller for electric-powered upper-limb prostheses. Proceed-
ings of the 19th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Vol 19, Pts 1–6—Magnificent Milestones and Emerging Oppor-
tunities in Medical Engineering (Vol. 19, pp. 2311–2314). IEEE, New York.
Bertos, Y.A., Heckathorne, C.W., Weir, R.F.f., Childress, D.S., 1998. In: A microprocessor
based E.P.P. controller for electric-powered prostheses. Paper presented at the Interna-
tional Society of Prosthetists and Orthotists ISPO Conference, Amsterdam, Netherlands,
June 1998.
Bhuiyan, M.S., Choudhury, I.A., Dahari, M., 2015. Development of a control system for
artificially rehabilitated limbs: a review. Biol. Cybern. 109 (2), 141–162. https://doi.
org/10.1007/s00422-014-0635-1.
Biddiss, E.A., Chau, T.T., 2007. Upper limb prosthesis use and abandonment: a survey of
the last 25 years. Prosthetics Orthot. Int. 31 (3), 236–257. https://doi.org/10.1080/
03093640600994581.
Biddiss, E., Chau, T., 2008. Dielectric elastomers as actuators for upper limb prosthetics:
challenges and opportunities. Med. Eng. Phys. 30 (4), 403–418. https://doi.org/
10.1016/j.medengphy.2007.05.011.
Blana, D., Kyriacou, T., Lambrecht, J.M., Chadwick, E.K., 2016. Feasibility of using com-
bined EMG and kinematic signals for prosthesis control: a simulation study using a virtual
reality environment. J. Electromyogr. Kinesiol. 29, 21–27. https://doi.org/10.1016/j.
jelekin.2015.06.010.
Blana, D., Chadwick, E.K., van den Bogert, A.J., Murray, W.M., 2017. Real-time simula-
tion of hand motion for prosthesis control. Comput. Methods Biomech. Biomed. Engin.
20 (5), 540–549. https://doi.org/10.1080/10255842.2016.1255943.
Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K.,
Stieglitz, T., 2010. A transverse intrafascicular multichannel electrode (TIME) to inter-
face with the peripheral nerve. Biosens. Bioelectron. 26 (1), 62–69. https://doi.org/
10.1016/j.bios.2010.05.010.
Branemark, P.I., Adell, R., Breine, U., Hansson, B.O., Lindstrom, J., Ohlsson, A., 1969.
Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast.
Reconstr. Surg. 3 (2), 81–100.
Calanca, A., Muradore, R., Fiorini, P., 2016. A review of algorithms for compliant control of
stiff and fixed-compliance robots. IEEE-ASME Trans. Mechatron. 21 (2), 613–624.
https://doi.org/10.1109/Tmech.2015.2465849.
Caldwell, D.G., Medranocerda, G.A., Goodwin, M., 1995. Control of pneumatic muscle
actuators. IEEE Control. Syst. Mag. 15 (1), 40–48. https://doi.org/10.1109/37.341863.
Celik, M.E., Aydin, E., 2017. An efficient inductive coil link design for wireless power trans-
fer to visual prostheses. Acta Phys. Pol. A 132 (3), 535–537. https://doi.org/10.12693/
APhysPolA.132.535.
Childress, D.S., 1980. Closed-loop control in prosthetic systems—historical-perspective.
Ann. Biomed. Eng. 8 (4–6), 293–303.
Childress, D.S., 1989. Control philosophies for limb prostheses. In: Paul, J. et al., (Eds.), Pro-
gress in Bioengineering. Adam Hilger, New York, pp. 210–215.
Childress, D.S., 1992. Control of limb prostheses. In: Bowker, J.W., Michael, J.W. (Eds.),
Atlas of Limb Prosthetics, Surgical, Prosthetic, and Rehabilitation Principles. Mosby-
Year Book, Inc, St. Louis, MO, pp. 175–199.