Page 241 - Handbook of Biomechatronics
P. 241
Upper-Limb Prosthetic Devices 237
Nationalshoe, 2013. Prosthetic, Orthotic Components & Orthopaedic Solutions Catalogue
2013. Retrieved from: http://www.nationalshoe.com/pdfs/NS_P_O_2013_Catalogue_
LoRes.pdf.
Niinomi, M., 2002. Recent metallic materials for biomedical applications. Metall. Mater.
Trans. A-Phys. Metall. Mater. Sci. 33 (3), 477–486. https://doi.org/10.1007/s11661-
002-0109-2.
Normann, R.A., Fernandez, E., 2016. Clinical applications of penetrating neural interfaces
and Utah electrode array technologies. J. Neural Eng. 13(6), 061003. https://doi.org/
10.1088/1741-2560/13/6/061003.
Oddo, C.M., Beccai, L., Wessberg, J., Wasling, H.B., Mattioli, F., Carrozza, M.C., 2011.
Roughness encoding in human and biomimetic artificial touch: spatiotemporal fre-
quency modulation and structural anisotropy of fingerprints. Sensors (Basel) 11 (6),
5596–5615. https://doi.org/10.3390/s110605596.
Oddo, C.M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini, F., … Micera, S.,
2016. Intraneural stimulation elicits discrimination of textural features by artificial finger-
tip in intact and amputee humans. elife 5, e09148. https://doi.org/10.7554/eLife.09148.
Ohnishi, K., Weir, R.F., Kuiken, T.A., 2007. Neural machine interfaces for controlling
multifunctional powered upper-limb prostheses. Expert Rev. Med. Devices 4 (1),
43–53. https://doi.org/10.1586/17434440.4.1.43.
Oliker, A., 2015. 3D printing: Revolutionizing medicine. Am. Q. 8, 46–47 (Spring 2015).
Ortiz-Catalan, M., Branemark, R., Hakansson, B., 2013. BioPatRec: A modular research
platform for the control of artificial limbs based on pattern recognition algorithms.
Source Code Biol. Med. 8 (1), 11. https://doi.org/10.1186/1751-0473-8-11.
Ortiz-Catalan, M., Hakansson, B., Branemark, R., 2014a. An osseointegrated human-
machine gateway for long-term sensory feedback and motor control of artificial limbs.
Sci. Transl. Med. 6 (257), 257re256. https://doi.org/10.1126/scitranslmed.3008933.
Ortiz-Catalan, M., Hakansson, B., Branemark, R., 2014b. Real-time and simultaneous con-
trol of artificial limbs based on pattern recognition algorithms. IEEE Trans. Neural Syst.
Rehabil. Eng. 22 (4), 756–764. https://doi.org/10.1109/TNSRE.2014.2305097.
Pandey, E., Srivastava, K., Gupta, S., Srivastava, S., Mishra, N., 2016. Some biocompatible
materials used in medical practices- a review. Int. J. Pharm. Sci. Res. 7 (7), 2748–2755.
https://doi.org/10.13040/Ijpsr.0975-8232.7(7).2748-55.
Parker, P., Englehart, K., Hudgins, B., 2006. Myoelectric signal processing for control of
powered limb prostheses. J. Electromyogr. Kinesiol. 16 (6), 541–548. https://doi.
org/10.1016/j.jelekin.2006.08.006.
Peerdeman, B., Boere, D., Witteveen, H., Huis in ‘tVeld, R., Hermens, H., Stramigioli, S.,
Misra, S., 2011. Myoelectric forearm prostheses: state of the art from a user-centered per-
spective. J. Rehabil. Res. Dev. 48(6). https://doi.org/10.1682/jrrd.2010.08.0161.
Pfurtscheller, G., Muller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R., 2003. ‘Thought’—
control of functional electrical stimulation to restore hand grasp in a patient with
tetraplegia. Neurosci. Lett. 351 (1), 33–36. https://doi.org/10.1016/S0304-3940(03)
00947-9.
Pons, J.L., Rodriguez, H., Luyckx, I., Reynaerts, D., Ceres, R., Van Brussel, H., 2002. High
torque ultrasonic motors for hand prosthetics: current status and trends. Technol. Health
Care 10 (2), 121–133.
Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N., 2016. Upper-limb robotic exoskel-
etons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng.
9, 4–14. https://doi.org/10.1109/RBME.2016.2552201.
Putti, V., 1917. Plastiche e Protesi Cinematiche. Chir. d. Org. d. Movimento 1, 419–492.
Sauerbruch, F., 1915. Chirurgische Vorarbiet f€ur eine Wilk€urlich Bewegliche K€unstliche
Hand. Mediziische Klinik 11 (41), 1125–1126.