Page 238 - Handbook of Biomechatronics
P. 238
234 Georgios A. Bertos and Evangelos G. Papadopoulos
Di Pino, G., Guglielmelli, E., Rossini, P.M., 2009. Neuroplasticity in amputees: main impli-
cations on bidirectional interfacing of cybernetic hand prostheses. Prog. Neurobiol.
88 (2), 114–126. https://doi.org/10.1016/j.pneurobio.2009.03.001.
Doubler, J.A., Childress, D.S., 1984a. An analysis of extended physiological proprioception
as a prosthesis-control technique. J. Rehabil. Res. Dev. 21 (1), 5–18.
Doubler, J.A., Childress, D.S., 1984b. Design and evaluation of a prosthesis control system
based on the concept of extended physiological proprioception. J. Rehabil. Res. Dev.
21 (1), 19–31.
Dudkiewicz, I., Gabrielov, R., Seiv-Ner, I., Zelig, G., Heim, M., 2004. Evaluation of pros-
thetic usage in upper limb amputees. Disabil. Rehabil. 26 (1), 60–63. https://doi.org/
10.1080/09638280410001645094.
Escudero, A.Z., Alvarez, J., Leija, L., 2002. Development of a parallel myoelectric prosthesis
for above elbow replacement.Second Joint EMBS-BMES Conference 2002, Vols. 1–3,
Conference Proceedings, pp. 2404–2405. https://doi.org/10.1109/Iembs.2002.1053346.
Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., Aszmann, O.C.,
2014. The extraction of neural information from the surface EMG for the control of
upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst.
Rehabil. Eng. 22 (4), 797–809. https://doi.org/10.1109/Tnsre.2014.2305111.
Fontaine, A.K., Gibson, E.A., Caldwell, J.H., Weir, R.F., 2017. Optical read-out of neural
activity in mammalian peripheral axons: calcium signaling at nodes of Ranvier. Sci. Rep.
7 (1), 4744. https://doi.org/10.1038/s41598-017-03541-y.
Ghovanloo, M., Najafi, K., 2004. A wideband frequency-shift keying wireless link for induc-
tively powered biomedical implants. IEEE Trans. Circuits Syst. I-Regular Papers
51 (12), 2374–2383. https://doi.org/10.1109/Tcsi.2004.838144.
Greer, J.D., Morimoto, T.K., Okamura, A.M., Hawkes, E.W., 2017. Series pneumatic arti-
ficial muscles (sPAMs) and application to a soft continuum robot. IEEE Int. Conf. Robot
Autom. 2017, 5503–5510. https://doi.org/10.1109/ICRA.2017.7989648.
Gretsch, K.F., Lather, H.D., Peddada, K.V., Deeken, C.R., Wall, L.B., Goldfarb, C.A.,
2016. Development of novel 3D-printed robotic prosthetic for transradial amputees.
Prosthetics Orthot. Int. 40 (3), 400–403. https://doi.org/10.1177/0309364615579317.
Hargrove, L.J., Miller, L.A., Turner, K., Kuiken, T.A., 2017. Myoelectric pattern recogni-
tion outperforms direct control for transhumeral amputees with targeted muscle
reinnervation: a randomized clinical. Trial. Sci. Rep. 7 (1), 13840. https://doi.org/
10.1038/s41598-017-14386-w.
Harvey, A.M., Masland, R.L., 1941. Actions of curarizing preparations in the human.
J. Pharmacol. Exp. Ther. 73 (3), 304–311.
Herberts, P., Almstrom, C., Kadefors, R., Lawrence, P.D., 1973. Hand prosthesis control via
myoelectric patterns. Acta Orthop. Scand. 44 (4), 389–409.
Hijjawi, J.B., Kuiken, T.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.,
Dumanian, G.A., 2006. Improved myoelectric prosthesis control accomplished using
multiple nerve transfers. Plast. Reconstr. Surg. 118 (7), 1573–1578. https://doi.org/
10.1097/01.prs.0000242487.62487.fb.
Hogan, N., 1985. Impedance control—an approach to manipulation 2. Implementation.
J. Dyn. Sys. Meas. Control-Trans. ASME 107 (1), 8–16. https://doi.org/
10.1115/1.3140713.
Hollerbach, J., Hunter, I., Ballantyne, J., 1992. A comparative analysis of actuator technol-
ogies for robotics. In: Robotics Review 2. MIT Press, Cambridge, MA, pp. 299–342.
Hudgins, B., Parker, P., Scott, R.N., 1993. A new strategy for multifunction myoelectric
control. IEEE Trans. Biomed. Eng. 40 (1), 82–94. https://doi.org/10.1109/10.204774.
Jacobsen, S.C., Knutti, D.F., Johnson, R.T., Sears, H.H., 1982. Development of the Utah
artificial arm. IEEE Trans. Biomed. Eng. 29 (4), 249–269. https://doi.org/10.1109/
TBME.1982.325033.