Page 322 - Handbook of Biomechatronics
P. 322
314 Andres F. Ruiz-Olaya et al.
de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W., 2015. Exoskeletons
for industrial application and their potential effects on physical work load. Ergonomics
59 (5), 671–681.
del-Alma, A.J., Gil-Agudo, A., Pons, J.L., Moreno, J.C., 2014. Hybrid FES-robot
cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehab.
11 (27), 1–15.
Dollar, A.M., Hugh, H., 2008. Lower extremity exoskeletons and active orthoses: challenges
and state-of-the-art. IEEE Trans. Robot. 24 (1), 144–158.
Donati, A.R.C., Shokur, S., Morya, E., et al., 2016. Long-term training with brain-machine
interfaces induces partial neurological recovery in paraplegic patients. Sci. Rep.
6 (30383), 1–16.
Doucet, B.M., Lam, A., Griffin, L., 2012. Neuromuscular electrical stimulation for skeletal
muscle function. Yale J. Biol. Med. 85 (2), 201–215.
Esquenazi, A., Talaty, M., Packel, A., Saulino, M., 2012. The rewalk powered exoskeleton
to restore ambulatory function to individuals with thoraciclevel motor-complete spinal
cord injury. Am. J. Phys. Med. Rehab. 91, 911–921.
Fleerkotte, B.M., Koopman, B., Buurke, J.H., van Asseldonk, E.H., van der Kooij, H.,
Rietman, J.S., 2014. The effect of impedance-controlled robotic gait training on walking
ability and quality in individuals with chronic incomplete spinal cord injury: an explor-
ative study. J. Neuroeng. Rehab. 11 (26), 1–15.
Fleischer, C.,Kondak, K.,Wege, A.,Kossyk, I., 2009.In: Research on exoskeletons atthe TU
Berlin.Proc. German Workshop on Robotics, 9–10 June, Braunschweig, Germany.
Garcia, E., Sater, J.M., Main, J., 2002. Exoskeletons for human performance
augmentation(EHPA): a program summary. J. Robot. Soc. Japan 20 (8), 44–48.
Ghan, J., Steger, R., Kazerooni, H., 2006. Control and system identification for the Berkeley
lower extremity exoskeleton (BLEEX). Adv. Robot. 20 (9), 989–1014.
Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., Feys, P., 2011. The Armeo
Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot
study. J. Neuroeng. Rehab. 8 (5), 1–8.
Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I., 2016. Developments in
hardware systems of active upper-limb exoskeleton robots: a review. Robot. Auton.
Syst. 75, 203–220.
Hasegawa, Y., Mikami, Y., Watanabe, K., Sankai, Y., 2008. In: Five-fingered assistive hand
with mechanical compliance of human finger.IEEE International Conference Robotics
and Automation (ICRA), Pasadena, CA, pp. 718–724.
He, H., Kiguchi, K., 2007. A study on EMG-based control of exoskeleton robots for human
lower-limb motion assist.Information Technology Applications in Biomedicine, ITAB
2007, 6th International Special Topic Conference, pp. 292–295.
Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C., 2003.
Robot-assisted arm trainer for the passive and active practice of bilateral forearm and
wrist movements in hemi paretic subjects. Arch. Phys. Med. Rehabil. 84 (6), 915–920.
Hristic, D., Vukobratovic, M., 1973. In: Development of active aids for handicapped.Proc.
III International Conference on Biomedical Engineering. Sorrento, Italy, pp. 123–129.
Hyon, S., Morimoto, J., Matsubara, T., Noda, T., Kawato, M., 2011. In: XoR: hybrid drive
exoskeleton robot that can balance.Intelligent Robots and Systems, IROS, IEEE/RSJ
International Conference, pp. 3975–3981.
Ison, M., Artemiadis, P., 2014. The role of muscle synergies in myoelectric control: trends
and challenges for simultaneous multifunction control. J. Neural Eng. 11(5), 051001.
Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T., Sakaeda, H.,
Abe, M., 2007. In: Development of a hand motion assist robot for rehabilitation therapy
by patient self-motion control.Proc. IEEE 10th International Conference on Rehabil-
itation Robotics(ICORR). Noordwijk, Netherlands, pp. 234–240.