Page 322 - Handbook of Biomechatronics
P. 322

314                                             Andres F. Ruiz-Olaya et al.


          de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W., 2015. Exoskeletons
             for industrial application and their potential effects on physical work load. Ergonomics
             59 (5), 671–681.
          del-Alma, A.J., Gil-Agudo, A., Pons, J.L., Moreno, J.C., 2014. Hybrid FES-robot
             cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehab.
             11 (27), 1–15.
          Dollar, A.M., Hugh, H., 2008. Lower extremity exoskeletons and active orthoses: challenges
             and state-of-the-art. IEEE Trans. Robot. 24 (1), 144–158.
          Donati, A.R.C., Shokur, S., Morya, E., et al., 2016. Long-term training with brain-machine
             interfaces induces partial neurological recovery in paraplegic patients. Sci. Rep.
             6 (30383), 1–16.
          Doucet, B.M., Lam, A., Griffin, L., 2012. Neuromuscular electrical stimulation for skeletal
             muscle function. Yale J. Biol. Med. 85 (2), 201–215.
          Esquenazi, A., Talaty, M., Packel, A., Saulino, M., 2012. The rewalk powered exoskeleton
             to restore ambulatory function to individuals with thoraciclevel motor-complete spinal
             cord injury. Am. J. Phys. Med. Rehab. 91, 911–921.
          Fleerkotte, B.M., Koopman, B., Buurke, J.H., van Asseldonk, E.H., van der Kooij, H.,
             Rietman, J.S., 2014. The effect of impedance-controlled robotic gait training on walking
             ability and quality in individuals with chronic incomplete spinal cord injury: an explor-
             ative study. J. Neuroeng. Rehab. 11 (26), 1–15.
          Fleischer, C.,Kondak, K.,Wege, A.,Kossyk, I., 2009.In: Research on exoskeletons atthe TU
             Berlin.Proc. German Workshop on Robotics, 9–10 June, Braunschweig, Germany.
          Garcia, E., Sater, J.M., Main, J., 2002. Exoskeletons for human performance
             augmentation(EHPA): a program summary. J. Robot. Soc. Japan 20 (8), 44–48.
          Ghan, J., Steger, R., Kazerooni, H., 2006. Control and system identification for the Berkeley
             lower extremity exoskeleton (BLEEX). Adv. Robot. 20 (9), 989–1014.
          Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., Feys, P., 2011. The Armeo
             Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot
             study. J. Neuroeng. Rehab. 8 (5), 1–8.
          Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I., 2016. Developments in
             hardware systems of active upper-limb exoskeleton robots: a review. Robot. Auton.
             Syst. 75, 203–220.
          Hasegawa, Y., Mikami, Y., Watanabe, K., Sankai, Y., 2008. In: Five-fingered assistive hand
             with mechanical compliance of human finger.IEEE International Conference Robotics
             and Automation (ICRA), Pasadena, CA, pp. 718–724.
          He, H., Kiguchi, K., 2007. A study on EMG-based control of exoskeleton robots for human
             lower-limb motion assist.Information Technology Applications in Biomedicine, ITAB
             2007, 6th International Special Topic Conference, pp. 292–295.
          Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C., 2003.
             Robot-assisted arm trainer for the passive and active practice of bilateral forearm and
             wrist movements in hemi paretic subjects. Arch. Phys. Med. Rehabil. 84 (6), 915–920.
          Hristic, D., Vukobratovic, M., 1973. In: Development of active aids for handicapped.Proc.
             III International Conference on Biomedical Engineering. Sorrento, Italy, pp. 123–129.
          Hyon, S., Morimoto, J., Matsubara, T., Noda, T., Kawato, M., 2011. In: XoR: hybrid drive
             exoskeleton robot that can balance.Intelligent Robots and Systems, IROS, IEEE/RSJ
             International Conference, pp. 3975–3981.
          Ison, M., Artemiadis, P., 2014. The role of muscle synergies in myoelectric control: trends
             and challenges for simultaneous multifunction control. J. Neural Eng. 11(5), 051001.
          Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T., Sakaeda, H.,
             Abe, M., 2007. In: Development of a hand motion assist robot for rehabilitation therapy
             by patient self-motion control.Proc. IEEE 10th International Conference on Rehabil-
             itation Robotics(ICORR). Noordwijk, Netherlands, pp. 234–240.
   317   318   319   320   321   322   323   324   325   326   327