Page 324 - Handbook of Biomechatronics
P. 324
316 Andres F. Ruiz-Olaya et al.
functional outcomes of two different types of robotic movement training in chronic
stroke survivors using the arm exoskeleton BONES. J. Neuroeng. Rehabil. 10 (112),
1–12.
Nakamura, T., Saito, K., Wang, Z., Kosuge, K., 2005. In: Realizing model-based wearable
antigravity muscles support with dynamics terms.Intelligent Robots and Systems, IROS
2005, IEEE/RSJ International Conference, pp. 2694–2699.
Nef, T., Mihelj, M., Colombo, G., Riener, R., 2006. In: ARMin-robot for rehabilitation of
the upper extremities.Robotics and Automation, ICRA 2006, Proceedings 2006 IEEE
International Conference, pp. 3152–3157.
Nilsson, A., Vreede, K.S., H€aglund, V., Kawamoto, H., Sankai, Y., Borg, J., 2014. Gait
training early after stroke with a new exoskeleton—the hybrid assistive limb: a study
of safety and feasibility. J. Neuroeng. Rehabil. 11 (92), 1–11.
Panizzolo, F.A., Galiana, I., Asbeck, A.T., Siviy, C., Schmidt, K., Holt, K.G., Walsh, C.J.,
2016. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of
loaded walking. J. Neuroeng. Rehabil. 13 (43), 1–14.
Pons, J.L., 2008. Wearable Robots: Biomechatronic Exoskeletons. John Wiley & Sons, New
Jersey, USA.
Pons, J.L., 2010. Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 29 (3),
57–63.
Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. In: The roboknee: an exoskeleton
for enhancing strength and endurance during walking.Robotics and Automation,
Proceedings ICRA’04, IEEE International Conference on vol. 3, IEEE, pp. 2430–2435.
Ramos, J.L., Meggiolaro, M.A., 2014. In: Use of surface electromyography for human
amplification using an exoskeleton driven by artificial pneumatic muscles. 5th IEEE/
RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob 2014), 12–15 August, Sao Paulo, Brazil,
Ronsse, R., Lenzi, T., Vitiello, N., Koopman, B., Van Asseldonk, E., De Rossi, S.M.M.,
Van den Kieboom, J., Van der Kooij, H., Carrozza, M.C., Ijspeert, A.J., 2011.
Oscillator-based assistance of cyclical movements: model-based and model free
approaches. Med. Biol. Eng. Comput. 49, 1173–1185.
Ruiz, A.F., Forner-Cordero, A., Rocon, E., Pons, J.L., 2006. In: Exoskeletons for rehabil-
itation and motor control.The First IEEE/RAS-EMBS International Conference on
Biomedical Robotics and Biomechatronics.
Ruiz, A.F., Rocon, E., Raya, R., Pons, J.L., 2008. In: Coupled control of human-
exoskeleton systems: an adaptative process.Conference on Human System Interactions.
Sanchez, R., Reinkensmeyer, D., Shah, P., Liu, J., Rao, S., Smith, R., Cramer, S.,
Rahman, T., Bobrow, J., 2004. Monitoring functional arm movement for home-based
therapy after stroke.Conference Proceedings IEEE Engineering Medical Biology Soci-
ety, San Francisco, CA, vol. 7, pp. 4787–4790.
Sawicki, G.S., Ferris, D.P., 2009. A pneumatically powered knee-ankle-foot orthosis
(KAFO) with myoelectric activation and inhibition. J. Neuroeng. Rehabil. 6 (23), 1–16.
Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human
machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (4), 456–469.
Schmidt, H., Werner, C., Bernhardt, R., Hesse, S., Kr€uger, J., 2007. Gait rehabilitation
machines based on programmable footplates. J. Neuroeng. Rehabil 4 (2), 1–7.
Scott, S.H., Winter, D.A., 1993. Biomechanical model of the human foot: kinematics and
kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104.
Seireg, A., Grundmann, J., 1981. Design of a Multitask Exoskeletal Walking Device for
Paraplegics. Biomechanics of Medical Devices Inc, New York, pp. 569–644.
Tingfang, Y., Marco, C., Calogero, M.O., Nicola., V., 2015. Review of assistive strategies in
powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136.