Page 324 - Handbook of Biomechatronics
P. 324

316                                             Andres F. Ruiz-Olaya et al.


             functional outcomes of two different types of robotic movement training in chronic
             stroke survivors using the arm exoskeleton BONES. J. Neuroeng. Rehabil. 10 (112),
             1–12.
          Nakamura, T., Saito, K., Wang, Z., Kosuge, K., 2005. In: Realizing model-based wearable
             antigravity muscles support with dynamics terms.Intelligent Robots and Systems, IROS
             2005, IEEE/RSJ International Conference, pp. 2694–2699.
          Nef, T., Mihelj, M., Colombo, G., Riener, R., 2006. In: ARMin-robot for rehabilitation of
             the upper extremities.Robotics and Automation, ICRA 2006, Proceedings 2006 IEEE
             International Conference, pp. 3152–3157.
          Nilsson, A., Vreede, K.S., H€aglund, V., Kawamoto, H., Sankai, Y., Borg, J., 2014. Gait
             training early after stroke with a new exoskeleton—the hybrid assistive limb: a study
             of safety and feasibility. J. Neuroeng. Rehabil. 11 (92), 1–11.
          Panizzolo, F.A., Galiana, I., Asbeck, A.T., Siviy, C., Schmidt, K., Holt, K.G., Walsh, C.J.,
             2016. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of
             loaded walking. J. Neuroeng. Rehabil. 13 (43), 1–14.
          Pons, J.L., 2008. Wearable Robots: Biomechatronic Exoskeletons. John Wiley & Sons, New
             Jersey, USA.
          Pons, J.L., 2010. Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 29 (3),
             57–63.
          Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. In: The roboknee: an exoskeleton
             for enhancing strength and endurance during walking.Robotics and Automation,
             Proceedings ICRA’04, IEEE International Conference on vol. 3, IEEE, pp. 2430–2435.
          Ramos, J.L., Meggiolaro, M.A., 2014. In: Use of surface electromyography for human
             amplification using an exoskeleton driven by artificial pneumatic muscles. 5th IEEE/
             RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
             (BioRob 2014), 12–15 August, Sao Paulo, Brazil,
          Ronsse, R., Lenzi, T., Vitiello, N., Koopman, B., Van Asseldonk, E., De Rossi, S.M.M.,
             Van den Kieboom, J., Van der Kooij, H., Carrozza, M.C., Ijspeert, A.J., 2011.
             Oscillator-based assistance of cyclical movements: model-based and model free
             approaches. Med. Biol. Eng. Comput. 49, 1173–1185.
          Ruiz, A.F., Forner-Cordero, A., Rocon, E., Pons, J.L., 2006. In: Exoskeletons for rehabil-
             itation and motor control.The First IEEE/RAS-EMBS International Conference on
             Biomedical Robotics and Biomechatronics.
          Ruiz, A.F., Rocon, E., Raya, R., Pons, J.L., 2008. In: Coupled control of human-
             exoskeleton systems: an adaptative process.Conference on Human System Interactions.
          Sanchez, R., Reinkensmeyer, D., Shah, P., Liu, J., Rao, S., Smith, R., Cramer, S.,
             Rahman, T., Bobrow, J., 2004. Monitoring functional arm movement for home-based
             therapy after stroke.Conference Proceedings IEEE Engineering Medical Biology Soci-
             ety, San Francisco, CA, vol. 7, pp. 4787–4790.
          Sawicki, G.S., Ferris, D.P., 2009. A pneumatically powered knee-ankle-foot orthosis
             (KAFO) with myoelectric activation and inhibition. J. Neuroeng. Rehabil. 6 (23), 1–16.
          Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human
             machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (4), 456–469.
          Schmidt, H., Werner, C., Bernhardt, R., Hesse, S., Kr€uger, J., 2007. Gait rehabilitation
             machines based on programmable footplates. J. Neuroeng. Rehabil 4 (2), 1–7.
          Scott, S.H., Winter, D.A., 1993. Biomechanical model of the human foot: kinematics and
             kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104.
          Seireg, A., Grundmann, J., 1981. Design of a Multitask Exoskeletal Walking Device for
             Paraplegics. Biomechanics of Medical Devices Inc, New York, pp. 569–644.
          Tingfang, Y., Marco, C., Calogero, M.O., Nicola., V., 2015. Review of assistive strategies in
             powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136.
   319   320   321   322   323   324   325   326   327   328   329