Page 323 - Handbook of Biomechatronics
P. 323

Upper and Lower Extremity Exoskeletons                       315


              Kazerooni, H., 1990. Human–robot interaction via the transfer of power and information
                 signals. IEEE Trans. Syst. Man Cyber 20 (2), 450–463.
              Kazerooni, H., 2008. In: A review of the exoskeleton and human augmentation technology.
                 ASME Dynamic Systems and Control Conference, 20–22 October, Michigan, USA,
                 pp. 1549–1557.
              Kazerooni, H., Steger, R., Hung, L., 1968. Hardiman I prototype project, special interim
                 study. In: General electric report, pp. S-68–1060.
              Kiguchi, K., 2007. Active exoskeletons for upper-limb motion assist. Int. J. Humanoid
                 Robot. 4 (03), 607–624.
              Kiguchi, K., Tanaka, T., Fukuda, T., 2004. Neuro-fuzzy control of a robotic exoskeleton
                 with EMG signals. IEEE Trans. Fuzzy Syst. 12, 481–490.
              Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R., 2014. Human-
                 robot interaction: kinematics and muscle activity inside a powered compliant knee
                 exoskeleton. IEEE Trans. Neural. Syst. Rehabil. Eng. 22 (6), 1128–1137.
              Kousidou, S., Tsagarakis, N., Caldwell, D.G., Smith, C., 2006. In: Assistive exoskeleton for
                 task based physiotherapy in 3-dimensional space.Biomedical Robotics and
                 Biomechatronics, BioRob 2006, The First IEEE/RAS-EMBS International Confer-
                 ence, pp. 266–271.
              Kwa, H.K., Noorden, J.H., Missel, M., Craig, T., Pratt, J.E., Neuhaus, P.D., 2009. In:
                 Development of the IHMC mobility assist exoskeleton.Robotics and Automation,
                 ICRA’09, IEEE International Conference on, IEEE, pp. 2556–2562.
              Kwakkel, G., Kollen, B.J., Krebs, H.I., 2008. Effects of robot-assisted therapy on upper
                 limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22 (2),
                 111–121.
              Lalitharatne, T.D., Teramoto, K., Hayashi, Y., Kiguchi, K., 2013. Towards hybrid
                 EEG-EMG-based control approaches to be used in bio-robotics applications: current
                 status, challenges and future directions. Paladyn J. Behav. Robot. 4 (2), 147–154.
              Li, Q., Wang, D., Du, Z., Song, Y., Sun, L., 2006. In: sEMG based control for 5 DOF upper
                 limb rehabilitation robot system.Proc. IEEE International Conference on Robotics and
                 Biomimetics (ROBIO), Kunming, China, pp. 1305–1310.
              Li, Z., Xie, H., Li, W., Yao, Z., 2014. Proceeding of human exoskeleton technology and
                 discussions on future research. Chinese J. Mech. Eng. 27 (3), 437–447.
              Lobo-Prat, J., Kooren, P.N., Stienen, A.H., Herder, J.L., Koopman, B.F., Veltink, P.H.,
                 2014. Non-invasive control interfaces for intention detection in active movement-
                 assistive devices. J. Neuroeng. Rehabil. 11 (168), 1–22.
              Louie, D.R., Eng, J.J., 2016. Powered robotic exoskeletons in post-stroke rehabilitation
                 of gait: a scoping review. J. Neuroeng. Rehabil. 13 (53), 1–10.
              Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S., 2014.
                 A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil.
                 11 (3), 1–29.
              Majidi, C., 2014. Soft robotics: a perspective—current trends and prospects for the future.
                 Soft Robot. 1 (1), 5–11.
              Manto, M., Topping, M., Soede, M., Sanchez-Lacuesta, J.J., Harwin, W., Pons, J.L.,
                 Willimas, J., Skaarup, S., Normie, L., 2003. Dynamically responsive intervention for
                 tremor suppression. IEEE Eng. Med. Biol. Mag. 22 (3), 120–132.
              Mayr, A., Kofler, M., Saltuari, L., 2008. ARMOR: an electromechanical robot for upper
                 limb training following stroke. A prospective randomized controlled pilot study.
                 Handchir. Mikrochir. Plast. Chir. 40, 66–73.
              Merodio, D.S., Soto, M.C., Arevalo, J.C., Armada, E.G., 2012. Control motion approach of
                 a lower limb orthosis to reduce energy consumption. Int. J. Adv. Robot. Syst. 9, 1–8.
              Milot, M.H., Spencer, S.J., Chan, V., Allington, J.P., Klein, J., Chou, C., Bobrow, J.E.,
                 Cramer, S.C., Reinkensmeyer, D.V., 2013. A crossover pilot study evaluating the
   318   319   320   321   322   323   324   325   326   327   328