Page 323 - Handbook of Biomechatronics
P. 323
Upper and Lower Extremity Exoskeletons 315
Kazerooni, H., 1990. Human–robot interaction via the transfer of power and information
signals. IEEE Trans. Syst. Man Cyber 20 (2), 450–463.
Kazerooni, H., 2008. In: A review of the exoskeleton and human augmentation technology.
ASME Dynamic Systems and Control Conference, 20–22 October, Michigan, USA,
pp. 1549–1557.
Kazerooni, H., Steger, R., Hung, L., 1968. Hardiman I prototype project, special interim
study. In: General electric report, pp. S-68–1060.
Kiguchi, K., 2007. Active exoskeletons for upper-limb motion assist. Int. J. Humanoid
Robot. 4 (03), 607–624.
Kiguchi, K., Tanaka, T., Fukuda, T., 2004. Neuro-fuzzy control of a robotic exoskeleton
with EMG signals. IEEE Trans. Fuzzy Syst. 12, 481–490.
Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R., 2014. Human-
robot interaction: kinematics and muscle activity inside a powered compliant knee
exoskeleton. IEEE Trans. Neural. Syst. Rehabil. Eng. 22 (6), 1128–1137.
Kousidou, S., Tsagarakis, N., Caldwell, D.G., Smith, C., 2006. In: Assistive exoskeleton for
task based physiotherapy in 3-dimensional space.Biomedical Robotics and
Biomechatronics, BioRob 2006, The First IEEE/RAS-EMBS International Confer-
ence, pp. 266–271.
Kwa, H.K., Noorden, J.H., Missel, M., Craig, T., Pratt, J.E., Neuhaus, P.D., 2009. In:
Development of the IHMC mobility assist exoskeleton.Robotics and Automation,
ICRA’09, IEEE International Conference on, IEEE, pp. 2556–2562.
Kwakkel, G., Kollen, B.J., Krebs, H.I., 2008. Effects of robot-assisted therapy on upper
limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22 (2),
111–121.
Lalitharatne, T.D., Teramoto, K., Hayashi, Y., Kiguchi, K., 2013. Towards hybrid
EEG-EMG-based control approaches to be used in bio-robotics applications: current
status, challenges and future directions. Paladyn J. Behav. Robot. 4 (2), 147–154.
Li, Q., Wang, D., Du, Z., Song, Y., Sun, L., 2006. In: sEMG based control for 5 DOF upper
limb rehabilitation robot system.Proc. IEEE International Conference on Robotics and
Biomimetics (ROBIO), Kunming, China, pp. 1305–1310.
Li, Z., Xie, H., Li, W., Yao, Z., 2014. Proceeding of human exoskeleton technology and
discussions on future research. Chinese J. Mech. Eng. 27 (3), 437–447.
Lobo-Prat, J., Kooren, P.N., Stienen, A.H., Herder, J.L., Koopman, B.F., Veltink, P.H.,
2014. Non-invasive control interfaces for intention detection in active movement-
assistive devices. J. Neuroeng. Rehabil. 11 (168), 1–22.
Louie, D.R., Eng, J.J., 2016. Powered robotic exoskeletons in post-stroke rehabilitation
of gait: a scoping review. J. Neuroeng. Rehabil. 13 (53), 1–10.
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S., 2014.
A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil.
11 (3), 1–29.
Majidi, C., 2014. Soft robotics: a perspective—current trends and prospects for the future.
Soft Robot. 1 (1), 5–11.
Manto, M., Topping, M., Soede, M., Sanchez-Lacuesta, J.J., Harwin, W., Pons, J.L.,
Willimas, J., Skaarup, S., Normie, L., 2003. Dynamically responsive intervention for
tremor suppression. IEEE Eng. Med. Biol. Mag. 22 (3), 120–132.
Mayr, A., Kofler, M., Saltuari, L., 2008. ARMOR: an electromechanical robot for upper
limb training following stroke. A prospective randomized controlled pilot study.
Handchir. Mikrochir. Plast. Chir. 40, 66–73.
Merodio, D.S., Soto, M.C., Arevalo, J.C., Armada, E.G., 2012. Control motion approach of
a lower limb orthosis to reduce energy consumption. Int. J. Adv. Robot. Syst. 9, 1–8.
Milot, M.H., Spencer, S.J., Chan, V., Allington, J.P., Klein, J., Chou, C., Bobrow, J.E.,
Cramer, S.C., Reinkensmeyer, D.V., 2013. A crossover pilot study evaluating the