Page 63 - Handbook of Biomechatronics
P. 63
Actuator Technologies 57
REFERENCES
Albu-Sch€affer, A., Eiberger, O., Fuchs, M., Grebenstein, M., Haddadin, S., Ott, C.,
Stemmer, A., Wimb€ock, T., Wolf, S., Borst, C., Hirzinger, G., 2011. Soft robotics: from
torque feedback controlled lightweight robots to intrinsically compliant systems. Int. J.
Robot. Res. 70, 185–207.
Alciatore, D.G., Histand, M.B., 2003. Introduction to Mechatronics and Measurement Sys-
tems, second ed. McGraw-Hill, Boston, MA.
B. S. Publication, 2016. IEC TS 60479-1 Consolidated.
Bar-Cohen, Y., 2001. In: Electroactive polymers as artificial muscles—reality and challenges.
Proceedings of the 42nd AIAA Structures, Structural Dynamics, and Materials Confer-
ence (SDM).
Belter, J.T., Segil, J.L., Dollar, A.M., Weir, R.F., 2013. Mechanical design and performance
specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev.
50 (5), 599.
Biddiss, E.A., Beaton, D., Chau, T., 2007. Consumer design priorities for upper limb pros-
thetics. Disabil. Rehabil. Assist. Technol. 2 (6), 346–357.
Brown, J.D., Gillespie, R.B., Gardner, D., Gansallo, E.A., 2012. In: Co-location of force
and action improves identification of force-displacement features.IEEE Haptics Sympo-
sium, pp. 187–193.
Caputo, J.M., Collins, S.H., 2014. A universal ankle–foot prosthesis emulator for human
locomotion experiments. J. Biomech. Eng. 136 (3), 35002.
Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., 2008. Dielectric
Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models
and Applications of an Emerging Electroactive Polymer Technology, Elsevier.
Chou, C., Hannaford, B., 1994. In: Static and dynamic characteristics of McKibben pneu-
matic artificial muscles.Robot. Autom. 1994. vol. 3, pp. 281–286.
Daerden, F., Lefeber, D., 2002. Pneumatic artificial muscles: actuators for robotics and auto-
mation. Eur. J. Mech. Environ. Eng. 47 (1), 11–21.
Doubler, J., Childress, D., 1984. An analysis of extended physiological proprioception as a
prosthesis-control technique. J. Rehabil. Res. Dev. 21 (1), 5–18.
Fish, R.M., Geddes, L.A., 2009. Conduction of electrical current to and through the human
body: a review. Eplasty 9, e44.
Gao, D., Wampler, C.W., 2009. Head injury criterion (HIC). IEEE Robot. Autom. Mag.
16 (4), 71–74.
Hannaford, B., Winters, J., 1990. Actuator properties and movement control: biological and
technological models. In: Multiple Muscle Systems: Biomechanics and Movement
Organization. Springer-Verlag, New York.
Hollerbach, J.M., Hunter, I., Ballantyne, J., 1991. A comparative analysis of actuator tech-
nologies for robotics. Robotics Rev. 2, 299–342.
ISO, 2011. Robots and robotic devices—Safety requirements for industrial robots—Part 1:
Robots. International Standards Organization. ISO 10218-1:2011.
ISO, 2014. Robots and robotic devices—Safety requirements for personal care robots. Inter-
national Standards Organization. ISO 13482:2014.
ISO, 2017a. Medical electrical equipment—Part 2-77: Particular requirements for the basic
safety and essential performance of robotically assisted surgical equipment. International
Standards Organization. IEC/DIS 80601-2-77.
ISO, 2017b. Medical electrical equipment—Part 2-78: Particular requirements for the basic
safety and essential performance of medical robots for rehabilitation. International Stan-
dards Organization. IEC/DIS 80601-2-78.
Johannes, M.S., Bigelow, J.D., Burck, J.M., Harshbarger, S.D., Kozlowski, M.V., 2011. An
overview of the developmental process for the modular prosthetic limb. Johns Hopkins
APL Tech. Dig. 30 (3), 207–216.