Page 165 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 165

154   Chapter 5 Depression discovery in cancer communities using deep learning




                                    [82] Y. Kim, “Convolutional neural networks for sentence classification, in:
                                       EMNLP 2014 e 2014 Conference on Empirical Methods in Natural
                                       Language Processing, Proceedings of the Conference, 2014, pp. 1746e1751.
                                    [83] A. Husseini Orabi, P. Buddhitha, M. Husseini Orabi, D. Inkpen, Deep
                                       Learning for Depression Detection of Twitter Users, 2018, pp. 88e97.
                                    [84] Y. Zhang, B. Wallace, A Sensitivity Analysis of (and Practitioners' Guide to)
                                       Convolutional Neural Networks for Sentence Classification, 2015.
                                    [85] L. Lenc, P. Kr  al, Word Embeddings for Multi-Label Document Classification,
                                       2017, pp. 431e437.
                                    [86] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9
                                       (8) (1997) 1735e1780.
                                    [87] K. Cho, et al., Learning Phrase Representations Using RNN Encoder-
                                       Decoder for Statistical Machine Translation, 2014.
                                    [88] A. Graves, Generating Sequences with Recurrent Neural Networks, 2013.
                                    [89] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, B. Xu, Text classification improved
                                       by integrating bidirectional LSTM with two-dimensional max pooling, in:
                                       COLING 2016-26th International Conference on Computational Linguistics,
                                       Proceedings of COLING, 2016, pp. 3485e3495. Technical Papers, 2016.
                                    [90] H. Yenala, M. Chinnakotla, J. Goyal, Convolutional bi-directional LSTM for
                                       detecting inappropriate query suggestions in web search, in: Lecture Notes
                                       in Computer Science (Including Subseries Lecture Notes in Artificial
                                       Intelligence and Lecture Notes in Bioinformatics), vol. 10234, 2017,
                                       pp. 3e16. LNAI, Springer Verlag.
                                    [91] O.R. Llombart, Using Machine Learning Techniques for Sentiment Analysis,
                                       2017.
                                    [92] G. Coppersmith, M. Dredze, C. Harman, Measuring post traumatic stress
                                       disorder in twitter, in: Proceedings of the 7th International AAAI Conference
                                       on Weblogs and Social Media (ICWSM), vol. 2, 2014, pp. 23e45.
                                    [93] V. Kalra, R. Aggarwal, Importance of text data preprocessing &
                                       implementation in RapidMiner, in: Proceedings of the First International
                                       Conference on Information Technology and Knowledge ManagementeNew
                                       Delhi, India, vol. 14, 2017.

                                    Further reading


                                    [1]  Y. Goldberg, Neural network methods for natural language processing, in:
                                       Synthesis Lectures on Human Language Technologies 10.1, 2017, pp. 1e309.
   160   161   162   163   164   165   166   167   168   169   170