Page 164 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 164

Chapter 5 Depression discovery in cancer communities using deep learning  153




               [67] N. Zainuddin, A. Selamat, R. Ibrahim, Discovering hate sentiment within
                   twitter data through aspect-based sentiment analysis, J. Phys. Conf. 1447 (1)
                   (January, 2020) 012056. IOP Publishing.
               [68] F.T. Giuntini, M.T. Cazzolato, M.D.J.D. dos Reis, A.T. Campbell, A.J. Traina,
                   J. Ueyama, A review on recognizing depression in social networks:
                   challenges and opportunities, J. Ambient Intell. Humaniz. Comput. (2020)
                   1e17.
               [69] J.W. Pennebaker, C.K. Chung, M. Ire-land, A. Gonzales, R.J. Booth, The
                   Development and Psychometric Properties of LIWC2007 the University of
                   Texas at Austin, 2007. Technical Report 2.
               [70] S. Jamison-Powell, C. Linehan, L. Daley,Andrew Garbett, S. Lawson, “I can't
                   get no sleep”: discussing #insomnia on Twitter, in: Conference on Human
                   Factors in Computing Systems - Proceedings, 2012, pp. 1501e1510.
               [71] M.T. Lehrman, C.O. Alm, Ruben A. Proano, Detecting distressed and non-
                   distressed affect states in short forum texts, in: Second Workshop on
                   Language in Social Media, LSM, 2012, pp. 9e18. Montreal.
               [72] M. De Choudhury, S. Counts, E. Horvitz, Major life changes and behavioral
                   markers in social media : case of childbirth, in: Computer Supported
                   Cooperative Work (CSCW), 2013, pp. 1431e1442.
               [73] H. Andrew Schwartz, J. Eichstaedt, M. LKern, G. Park, M. Sap, D. Stillwell,
                   M. Kosinski, L. Ungar, Towards assessing changes in degree of depression
                   through Facebook, in: Proceedings of the Workshop on Computational
                   Linguistics and Clinical Psychology: From Linguistic Signal to Clinical
                   Reality, 2014, pp. 118e125.
               [74] V. Arya, R. Agrawal, Improvement in text categorization using semi-
                   supervised approach and lexical chains, J. Comput. Theor. Nanosci. 16 (12)
                   (2019) 5122e5126.
               [75] M. De Choudhury, Role of social media in tackling challenges in mental
                   health, in: Proceedings of the 2nd International Workshop on Socially-
                   Aware Multimedia (SAM’13), 2013, pp. 49e52.
               [76] D. Preotiuc-Pietro, M. Sap, H. Andrew Schwartz, L. Ungar, Mental lllness
                   detection at the world well-being project for the CLPsych 2015 shared task,
                   in: Proceedings of the 2nd Workshop on Computational Linguistics and
                   Clinical Psychology: From Linguistic Signal to Clinical Reality, 2015,
                   pp. 40e45.
               [77] J.W. Pennebaker, The Secret Life of Pronouns: What Our Words Say about
                   Us, Bloomsbury Press, 2011.
               [78] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
                   Representations in Vector Space.CoRR, arXiv preprint arXiv:1301.3781.,
                   2013. pp. 1e12 (David N Milne, Glen Pink, Ben Hachey, and CoRR).
               [79] M. Faruqui, J. Dodge, K. Sujay, J. ChrisDyer, E. Hovy, N.A. Smith,
                   Retrofitting word vectors to semantic lexicons, in: The 2015 Conference of
                   the North American Chapter of the Association for Computational
                   Linguistics - Human Language Technologies (NAACL HLT2015), Denver.
                   Felix Hill, Kyunghyu, 2015.
               [80] R. Collobert, J. Weston, A unified architecture for natural language
                   processing: deep neural networks with multitask learning, in: Proceedings
                   of the 25th International Conference on Machine Learning, ACM, New
                   York, 2008, pp. 160e167.
               [81] F. Hill, K. Cho, A. Korhonen, Learning Distributed Representations of
                   Sentences From Unlabelled Data, 2016, pp. 1367e1377.
   159   160   161   162   163   164   165   166   167   168   169