Page 163 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 163
152 Chapter 5 Depression discovery in cancer communities using deep learning
[51] A. Weichselbraun, S. Gindl, A. Scharl, A context-dependent supervised
learning approach to sentiment detection in large textual databases, J. Inf.
Data Manag. 1 (3) (2010) 329e342.
[52] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, R. Passonneau, Sentiment
Analysis of Twitter Data, 2011.
[53] J. Fiaidhi, O. Mohammed, S. Mohammed, S. Fong, T. h Kim, Mining
twitterspace for information: classifying sentiments programmatically using
Java, in: Seventh International Conference on Digital Information
Management, 2012.
[54] S.T. Li, F.C. Tsai, Noise control in document classification based on fuzzy
formal concept analysis, in: IEEE International Conference on Fuzzy
Systems (FUZZ), IEEE, 2011, pp. 2583e2588.
[55] S.T. Li, F.C. Tsai, A fuzzy conceptualization model for text mining with
application in opinion polarity classification, Knowl. Base Syst. 39 (2013)
23e33.
[56] E. Kontopoulos, C. Berberidis, T. Dergiades, N. Bassiliades, Ontology-based
sentiment analysis of twitter posts, Expert Syst. Appl. 40 (10) (2013)
4065e4074.
[57] E. Cambria, C. Havasi, A. Hussain, SenticNet 2: a semantic and affective
resource for opinion mining and sentiment analysis, in: Proceedings of the
Twenty-Fifth International Florida Artificial Intelligence Research Society
Conference, 2012.
[58] E. Cambria, T. Benson, C. Eckl, A. Hussain, Sentic PROMs: application of
sentic computing to the development of a novel unified framework for
measuring health-care quality, Expert Syst. Appl. 39 (2012) 10533e10543.
[59] E. Cambria, A. Hussain, C. Havasi, Towards crowd validation of the UK
National health service, in: Web Science Conference, Raleigh, NC, USA,
2010.
[60] M.L. Cabling, J.W. Turner, A. Hurtado-de-Mendoza, Y. Zhang, X. Jiang,
F. Drago, V.B. Sheppard, Sentiment analysis of an online breast cancer
support group: communicating about tamoxifen, Health Commun. 33 (9)
(2018) 1158e1165.
[61] S.E. Alajajian, J.R. Williams, A.J. Reagan, S.C. Alajajian, M.R. Frank,
L. Mitchell, J. Lahne, C.M. Danforth, P.S. Dodds, The Lexicocalorimeter:
gauging public health through caloric input and output on social media,
PLoS One 12 (2017) e0168893.
[62] A.G. Reece, A.J. Reagan, K.L. Lix, P.S. Dodds, C.M. Danforth, E.J. Langer,
Forecasting the Onset and Course of Mental Illness with Twitter data, 2016
arXiv preprint arXiv:1608.07740.
[63] M. Birjali, A. Beni-Hssane, M. Erritali, A method proposed for estimating
depressed feeling tendencies of social media users utilizing their data, Adv.
Intell. Syst. Comput. 552 (2017) 413e420.
[64] R.G. Rodrigues, R.M. das Dores, C.G. Camilo-Junior, T.C. Rosa, SentiHealth-
Cancer: a sentiment analysis tool to help detecting mood of patients in
online social networks, Int. J. Med. Inf. 85 (1) (2016) 80e95.
[65] T.H. Zhou, G.L. Hu, L. Wang, Psychological disorder identifying method
based on emotion perception over social networks, Int. J. Environ. Res.
Publ. Health 16 (6) (2019) 953.
[66] X. Wang, C. Zhang, Y. Ji, A depression detection model based on sentiment
analysis in micro-blog social network, in: Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Germany, Berlin,
April 2013, pp. 14e17.