Page 252 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 252
Chapter 8 A review on plant diseases recognition through deep learning 243
[47] K. Yamamoto, T. Togami, N. Yamaguchi, Super-Resolution of plant disease
images for the acceleration of image-based phenotyping and vigor
diagnosis in agriculture, Sensors 17 (11) (2017) 2557.
x
x
[48] H. Durmus, E.O. G€ unes, M. Kırcı, Disease detection on the leaves of the
tomato plants by using deep learning, in: Proceedings of the 2017 6th
International Conference on Agro-Geoinformatics, Fairfax, VA, USA, pp:
1e5, 2017.
[49] M.H. Saleem, J. Potgieter, K.M. Arif, Plant disease detection and
classification by deep learning, Plants 8 (11) (2019) 468.
[50] H.A. Atabay, Deep residual learning for tomato plant leaf disease
identification, J. Theor. Appl. Inf. Technol. 95 (24) (2017) 6800e6808.
[51] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa,
A. Moussaoui, Deep learning for plant diseases: detection and saliency map
visualisation, in: Human and Machine Learning, Springer International
Publishing, Cham, 2018, pp. 93e117.
[52] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, Deep
neural networks based recognition of plant diseases by leaf image
classification, Comput. Intell. Neurosci. (2016) 1e11.
[53] S. Zhang, W. Huang, C. Zhang, Three-channel convolutional neural
networks for vegetable leaf disease recognition, Cognit. Syst. Res. 53 (2019)
31e41.
[54] S.P. Mohanty, D.P. Hughes, M. Salath e, Using deep learning for image-
based plant disease detection, Front. Plant Sci. 7 (2016) 1419.
[55] A.C. Cruz, A. Luvisi, L. De Bellis, Y. Ampatzidis, Vision-based plant disease
detection system using transfer and deep learning, in: 2017 ASABE Annual
International Meeting, American Society of Agricultural and Biological
Engineers, 2017, p. 1.
[56] J. Ma, K. Du, F. Zheng, L. Zhang, Z. Gong, Z. Sun, A recognition method for
cucumber diseases using leaf symptom images based on deep
convolutional neural network, Comput. Electron. Agric. 154 (2018) 18e24.
[57] A. Fuentes, S. Yoon, S. Kim, D. Park, A robust deep-learning-based detector
for real-time tomato plant diseases and pests recognition, Sensors 17 (9)
(2017) 2022. https://doi.org/10.3390/s17092022.
[58] M.G. Selvaraj, A. Vergara, H. Ruiz, N. Safari, S. Elayabalan, W. Ocimati,
G. Blomme, AI-powered banana diseases and pest detection, Plant Methods
15 (1) (2019) 92.
[59] C. Decant, T. Wiesner-Hanks, S. Chen, E.L. Stewart, J. Yosinski, M.A. Gore,
R.J. Nelson, H. Lipson, Automated identification of northern leaf blight-
infected maize plants from field imagery using deep learning
Phytopathology, Annu. Rev. Phytopathol. 107 (1) (2017) 1426e1432.
[60] S. Wallelign, S.M. Polceanu, C. Buche, Soybean plant disease identification
using convolutional neural network, in: Proceedings of the Thirty-First
International Flairs Conference, Melbourne, USA, pp. 21e23, May 2018.
[61] J. Lu, J. Hu, G. Zhao, F. Mei, C. Zhang, An in-field automatic wheat disease
diagnosis system, Comput. Electron. Agric. 142 (2012) 369e379.
[62] J.G. Ha, H. Moon, J.T. Kwak, S.I. Hassan, M. Dang, O.N. Lee, H.Y. Park,
Deep convolutional neural network for classifying Fusarium wilt of radish
from unmanned aerial vehicles, J. Appl. Remote Sens. 11 (2017) 042621.
[63] A.K. Mahlein, E. Alisaac, A.Al Masri, J. Behmann, H.W. Dehne, E.C. Oerke,
Comparison and combination of thermal, fluorescence, and hyperspectral
imaging for monitoring fusarium head blight of wheat on spikelet scale,
Sensors 19 (2019) 2281.