Page 252 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 252

Chapter 8 A review on plant diseases recognition through deep learning  243




               [47] K. Yamamoto, T. Togami, N. Yamaguchi, Super-Resolution of plant disease
                   images for the acceleration of image-based phenotyping and vigor
                   diagnosis in agriculture, Sensors 17 (11) (2017) 2557.
                                  x
                          x
               [48] H. Durmus, E.O. G€ unes, M. Kırcı, Disease detection on the leaves of the
                   tomato plants by using deep learning, in: Proceedings of the 2017 6th
                   International Conference on Agro-Geoinformatics, Fairfax, VA, USA, pp:
                   1e5, 2017.
               [49] M.H. Saleem, J. Potgieter, K.M. Arif, Plant disease detection and
                   classification by deep learning, Plants 8 (11) (2019) 468.
               [50] H.A. Atabay, Deep residual learning for tomato plant leaf disease
                   identification, J. Theor. Appl. Inf. Technol. 95 (24) (2017) 6800e6808.
               [51] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa,
                   A. Moussaoui, Deep learning for plant diseases: detection and saliency map
                   visualisation, in: Human and Machine Learning, Springer International
                   Publishing, Cham, 2018, pp. 93e117.
               [52] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, Deep
                   neural networks based recognition of plant diseases by leaf image
                   classification, Comput. Intell. Neurosci. (2016) 1e11.
               [53] S. Zhang, W. Huang, C. Zhang, Three-channel convolutional neural
                   networks for vegetable leaf disease recognition, Cognit. Syst. Res. 53 (2019)
                   31e41.
               [54] S.P. Mohanty, D.P. Hughes, M. Salath  e, Using deep learning for image-
                   based plant disease detection, Front. Plant Sci. 7 (2016) 1419.
               [55] A.C. Cruz, A. Luvisi, L. De Bellis, Y. Ampatzidis, Vision-based plant disease
                   detection system using transfer and deep learning, in: 2017 ASABE Annual
                   International Meeting, American Society of Agricultural and Biological
                   Engineers, 2017, p. 1.
               [56] J. Ma, K. Du, F. Zheng, L. Zhang, Z. Gong, Z. Sun, A recognition method for
                   cucumber diseases using leaf symptom images based on deep
                   convolutional neural network, Comput. Electron. Agric. 154 (2018) 18e24.
               [57] A. Fuentes, S. Yoon, S. Kim, D. Park, A robust deep-learning-based detector
                   for real-time tomato plant diseases and pests recognition, Sensors 17 (9)
                   (2017) 2022. https://doi.org/10.3390/s17092022.
               [58] M.G. Selvaraj, A. Vergara, H. Ruiz, N. Safari, S. Elayabalan, W. Ocimati,
                   G. Blomme, AI-powered banana diseases and pest detection, Plant Methods
                   15 (1) (2019) 92.
               [59] C. Decant, T. Wiesner-Hanks, S. Chen, E.L. Stewart, J. Yosinski, M.A. Gore,
                   R.J. Nelson, H. Lipson, Automated identification of northern leaf blight-
                   infected maize plants from field imagery using deep learning
                   Phytopathology, Annu. Rev. Phytopathol. 107 (1) (2017) 1426e1432.
               [60] S. Wallelign, S.M. Polceanu, C. Buche, Soybean plant disease identification
                   using convolutional neural network, in: Proceedings of the Thirty-First
                   International Flairs Conference, Melbourne, USA, pp. 21e23, May 2018.
               [61] J. Lu, J. Hu, G. Zhao, F. Mei, C. Zhang, An in-field automatic wheat disease
                   diagnosis system, Comput. Electron. Agric. 142 (2012) 369e379.
               [62] J.G. Ha, H. Moon, J.T. Kwak, S.I. Hassan, M. Dang, O.N. Lee, H.Y. Park,
                   Deep convolutional neural network for classifying Fusarium wilt of radish
                   from unmanned aerial vehicles, J. Appl. Remote Sens. 11 (2017) 042621.
               [63] A.K. Mahlein, E. Alisaac, A.Al Masri, J. Behmann, H.W. Dehne, E.C. Oerke,
                   Comparison and combination of thermal, fluorescence, and hyperspectral
                   imaging for monitoring fusarium head blight of wheat on spikelet scale,
                   Sensors 19 (2019) 2281.
   247   248   249   250   251   252   253   254   255   256   257