Page 253 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 253

244   Chapter 8 A review on plant diseases recognition through deep learning




                                    [64] J. Yue, W. Zhao, S. Mao, H. Liu, Spectralespatial classification of
                                       hyperspectral images using deep convolutional neural networks, Remote
                                       Sens. Lett. 6 (2015) 468e477.
                                    [65] A. Signoroni, M. Savardi, A. Baronio, S. Benini, Deep learning meets
                                       hyperspectral image analysis: a multidisciplinary review, J. Imaging 5 (2019)
                                       52.
                                    [66] X. Jin, L. Jie, S. Wang, H. Qi, S. Li, Classifying wheat hyperspectral pixels of
                                       healthy heads and Fusarium head blight disease using a deep neural
                                       network in the wild field, Remote Sens. 10 (2018) 395.
                                    [67] D. Wang, R. Vinson, M. Holmes, G. Seibel, A. Bechar, S. Nof, Y. Tao, Early
                                       detection of tomato spotted wilt virus by hyperspectral imaging and outlier
                                       removal auxiliary classifier generative adversarial nets (OR-AC-GAN), Sci.
                                       Rep. 9 (2019) 4377.
                                    [68] K. Nagasubramanian, S. Jones, A.K. Singh, A. Singh,
                                       B. Ganapathysubramanian, S. Sarkar, Explaining hyperspectral imaging
                                       based plant disease identification: 3D CNN and saliency maps, arXiv 1804
                                       (2018) 08831.
                                    [69] X. Zhang, L. Han, Y. Dong, Y. Shi, W. Huang, L. Han, P. Gonz  alez-Moreno,
                                       H. Ma, H. Ye, T. Sobeih, Deep learning-based approach for automated
                                       yellow rust disease detection from high-resolution hyperspectral UAV
                                       images, Remote Sens. 11 (2019) 1554.
   248   249   250   251   252   253   254   255   256   257   258