Page 299 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 299

290   Chapter 10 Deep neural network in medical image processing




                                     [8] K. Itoh, ID number recognition of X-ray films by a neural network, Comput.
                                       Methods Progr. Biomed. 43 (1e2) (1994) 15e18, https://doi.org/10.1016/
                                       0169-2607(94)90179-1.
                                     [9] Z. Bai, L.L.C. Kasun, G.B. Huang, Generic object recognition with local
                                       receptive fields based extreme learning machine, Proc. Comp. Sci. 53 (1)
                                       (2015) 391e399, https://doi.org/10.1016/j.procs.2015.07.316.
                                    [10] A. Joly, H. Goëau, P. Bonnet, V. Baki  c, J. Barbe, S. Selmi, et al., Interactive
                                       plant identification based on social image data, Ecol. Inf. 23 (2014) 22e34,
                                       https://doi.org/10.1016/j.ecoinf.2013.07.006.
                                    [11] F. Murat, O. Yildirim, M. Talo, U.B. Baloglu, Y. Demir, U.R. Acharya,
                                       Application of deep learning techniques for heartbeats detection using ECG
                                       signals-analysis and review, Comput. Biol. Med. 120 (February 2020)
                                       103726, https://doi.org/10.1016/j.compbiomed.2020.103726.
                                    [12] S. Hao, Y. Zhou, Y. Guo, A brief survey on semantic segmentation with deep
                                       learning, Neurocomputing (2020), https://doi.org/10.1016/j.neucom.2019.11.118.
                                    [13] P. Gopika, V. Sowmya, E. Gopalakrishnan, K. Soman, Transferable Approach
                                       for Cardiac Disease Classification Using Deep Learning, Elsevier Inc., 2020,
                                       https://doi.org/10.1016/b978-0-12-819061-6.00012-4.
                                    [14] N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi, in: Medical Image
                                       Computing and Computer-assisted Intervention e MICCAI 2015: 18th
                                       International Conference Munich, Germany, October 5e9, 2015
                                       Proceedings, Part III, Lecture Notes in Computer Science (Including
                                       Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
                                       Bioinformatics) 9351 (Cvd), 2015, pp. 12e20, https://doi.org/10.1007/978-3-
                                       319-24574-4.
                                    [15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going
                                       deeper with convolutions, in: 2015 IEEE Conference on Computer Vision
                                       and Pattern Recognition (CVPR), vol. 91, IEEE, 2015, pp. 1e9, https://
                                       doi.org/10.1109/CVPR.2015.7298594, http://doi.wiley.com/10.1002/jctb.
                                       4820. U, http://ieeexplore.ieee.org/document/7298594/.
                                    [16] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
                                       436e444, https://doi.org/10.1038/nature14539.
                                    [17] X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, Y. Fan, A deep learning model
                                       integrating FCNNs and CRFs for brain tumor segmentation, Med. Image
                                       Anal. 43 (2018) 98e111, https://doi.org/10.1016/j.media.2017.10.002.
                                    [18] H. Zhang, Y. Liu, B. Xie, J. Yu, Orientation contrast model for boundary
                                       detection, J. Vis. Commun. Image Represent. 25 (5) (2014) 774e784, https://
                                       doi.org/10.1016/j.jvcir.2014.01.011.
                                    [19] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, et al.,
                                       Brain tumor segmentation with deep neural networks, Med. Image Anal. 35
                                       (2017) 18e31, https://doi.org/10.1016/j.media.2016.05.004, arXiv:1505.03540.
                                    [20] A. Bria, C. Marrocco, F. Tortorella, Addressing class imbalance in deep learning
                                       for small lesion detection on medical images, Comput. Biol. Med. 120
                                       (February) (2020) 103735, https://doi.org/10.1016/j.compbiomed.2020.103735.
                                    [21] L. Saba, M. Biswas, V. Kuppili, E. Cuadrado Godia, H.S. Suri, D.R. Edla, et
                                       al., The present and future of deep learning in radiology, Eur. J. Radiol. 114
                                       (February 2019) 14e24, https://doi.org/10.1016/j.ejrad.2019.02.038.
                                    [22] Z. Liu, C. Yao, H. Yu, T. Wu, Deep reinforcement learning with its
                                       application for lung cancer detection in medical Internet of Things, Future
                                       Generat. Comput. Syst. 97 (2019) 1e9, https://doi.org/10.1016/
                                       j.future.2019.02.068.
   294   295   296   297   298   299   300   301   302   303   304