Page 300 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 300
Chapter 10 Deep neural network in medical image processing 291
[23] S. Sengupta, A. Singh, H.A. Leopold, T. Gulati, V. Lakshminarayanan,
Ophthalmic diagnosis using deep learning with fundus images e a critical
review, Artif. Intell. Med. 102 (2020) 101758, https://doi.org/10.1016/
j.artmed.2019.101758.
[24] N. Tajbakhsh, L. Jeyaseelan, Q. Li, J.N. Chiang, Z. Wu, X. Ding, Embracing
imperfect datasets: a review of deep learning solutions for medical image
segmentation, Med. Image Anal. 63 (2020) 101693, https://doi.org/10.1016/
j.media.2020.101693, arXiv:1908.10454.
[25] M.H. Hesamian, W. Jia, X. He, P. Kennedy, Deep learning techniques for
medical image segmentation: achievements and challenges, J. Digit.
Imaging 32 (4) (2019) 582e596, https://doi.org/10.1007/s10278-019-00227-x.
[26] M.A. Ebrahimighahnavieh, S. Luo, R. Chiong, Deep learning to detect
Alzheimer’s disease from neuroimaging: a systematic literature review,
Comput. Methods Progr. Biomed. 187 (2020) 105242, https://doi.org/
10.1016/j.cmpb.2019.105242.
[27] D. Shen, G. Wu, H.-I. Suk, Deep learning in medical image analysis, Annu.
Rev. Biomed. Eng. 19 (1) (2017) 221e248, https://doi.org/10.1146/annurev-
bioeng-071516-044442.
[28] H.H.N. Pham, M. Futakuchi, A. Bychkov, T. Furukawa, K. Kuroda,
J. Fukuoka, Detection of lung cancer lymph node metastases from
whole-slide histopathologic images using a two-step deep learning
approach, Am. J. Pathol. 189 (12) (2019) 2428e2439, https://doi.org/
10.1016/j.ajpath.2019.08.014.
[29] X. Yang, L. Wu, W. Ye, K. Zhao, Y. Wang, W. Liu, et al., Deep learning
signature based on staging CT for preoperative prediction of sentinel lymph
node metastasis in breast cancer, Acad. Radiol. (4) (2019) 1e8, https://
doi.org/10.1016/j.acra.2019.11.007.
[30] D. Dong, M.-J. Fang, L. Tang, X.-H. Shan, J.-B. Gao, F. Giganti, et al., Deep
learning radiomic nomogram can predict the number of lymph node
metastasis in locally advanced gastric cancer: an international multi-center
study, Ann. Oncol. (2020), https://doi.org/10.1016/j.annonc.2020.04.003
https://linkinghub.elsevier.com/retrieve/pii/S0923753420392942.
[31] T. Li, Y. Gao, K. Wang, S. Guo, H. Liu, H. Kang, Diagnostic assessment of
deep learning algorithms for diabetic retinopathy screening, Inf. Sci. 501
(2019) 511e522, https://doi.org/10.1016/j.ins.2019.06.011.
[32] J. de la Torre, A. Valls, D. Puig, A deep learning interpretable classifier for
diabetic retinopathy disease grading, Neurocomputing (2020), https://
doi.org/10.1016/j.neucom.2018.07.102 arXiv:1712.08107.
[33] K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane,
D.K. Menon, et al., Efficient multi-scale 3D CNN with fully connected CRF
for accurate brain lesion segmentation, Med. Image Anal. 36 (2017) 61e78,
https://doi.org/10.1016/j.media.2016.10.004, arXiv:1603.05959.
[34] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation, in: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 10, IEEE, 2015, pp. 3431e3440, https://doi.org/
10.1109/CVPR.2015.7298965.
[35] J. Mari etho, R. Collobert, S. Bengio, Torch: A Modular Machine Learning
Software Library, 2002 http://citeseerx.ist.psu.edu/viewdoc/download;
jsessionid¼B64FC2E6B7A90192A33A955174865198?doi¼10.1.1.8.9850{\&}
rep¼rep1{\&}type¼pdf.
[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et al.,
Caffe: Convolutional Architecture for Fast Feature Embedding, 2014 arXiv
preprint, https://arxiv.org/abs/1408.5093.