Page 304 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 304

Index 295




                 segmentation architectures,    virtual assistants, 82     tools, 63e68
                     36e37                      visual recognition, 82     two-dimensional tensor,
                 VGGNet, 163e164, 164f        architectures, 284e285           64e65
               Convolutional neural networks  artificial neural networks, 193f  type, 64
                     (CNNs), 156              basic architecture, 27f    Deep neural network
                 architecture, 5f             branches, 196e197            artificial neural network, 283
                 artificial intelligence (AI), 3f  challenges, 194e195      backpropagation algorithm,
                 coronavirus (COVID-19), 2    Convolutional Architecture for   271
                 fire module, 9e11                 Fast Feature Embedding   computed tomography (CT)
                 security, 11e12                  (CAFFE), 67                  images, 273
                 SqueezeNet architecture, 4f    features, 67               computer vision, 274e283
                 training and prediction        theano, 68                 deep learning, 283e285
                     scheme, 4f                 torch tool, 68             digital image, 274e283, 276f
                 types, 2t                    diagnostics, 198e208           enhancement, 279
               Convolution layerekernel, 74,    challenges, 203e207          image processing steps,
                     74f                        future, 207e208                277e280, 278f
                                                hominoid barricades, 206     medical image formats,
               Data set, 158, 158fe159f         motivation, 200e202            275e277
               Deep belief networks (DBNs),     retroactive versus           noncontextual
                     69e71, 69f                   forthcoming trainings,       segmentation, 279
                 architecture, 70f                203e205                    object recognition,
                 fine-tuning stage, 255          solutions, 203e207             279e280
                 greedy layer-wise              trouble associating          segmentation, 279
                     unsupervised training        dissimilar algorithms, 206  GoogLeNet, 272
                     principle, 69e70           vulnerability, 207         labeled data set, 281
                 pretraining stage, 254       early detection of diseases,  machine learning, 280, 280f
                 restricted Boltzmann machine     208e214                  reinforcement learning,
                     (RBM), 69                  Alzheimer’s disease,           282e283
                 visible joint distribution, 69f  210e211                  supervised learning, 281
                 working, 71                    attention deficit           unlabeled data set, 281
                 working of, 71                   hyperactivity disorder   unsupervised learning, 282
               Deep Boltzmann Machine             (ADHD), 213e214        Depression
                     (DBM), 81e82               autism spectrum disorder,  continuous bag of words
               Deep learning (DL), 25             212e213                      (CBOW), 139e141, 140f
                 algorithms, 69e82              rheumatic diseases,        convolutional neural network,
                 Amazon Web Service (AWS),        209e210                      142e144, 142fe143f
                     66e67                    further advancements, 214      bidirectional long short-
                 applications, 195f           Keras, 65e67                     term memory, 147e148,
                   automatic handwriting        backend, 65e66                 148f
                     generation, 83             TensorFlow vs., 66t, 63      long short-term memory,
                   automatic machine          machine learning (ML),           146e148, 146f
                     translation, 83, 194         192                        multichannel CNN model,
                   entertainment, 82          one-dimensional tensor, 64       144
                   fraud news detection, 193  rank, 63                       nonstatic-CNN model, 144
                   imageelanguage             rectified linear unit (ReLU), 62  random-CNN model, 144
                     translations, 83         shape, 64                      recurrent neural network,
                   natural language processing  sigmoid function, 62f          144e146, 144fe145f
                     (NLP), 194               tensor data structure, 63      static-CNN model, 144
                   self-driving cars, 193     TensorFlow, 63e65              variants, 144
   299   300   301   302   303   304   305   306   307