Page 307 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 307
298 Index
Protein secondary structure Segmentation techniques, 279, transform domain technique,
prediction (Continued) 285e288 14
disorder prediction, 265 different approaches for, types, 13
protein loop modeling, 265 285e286 Supervised learning, 281
protein quality assessment edge-based segmentation
(QA), 265 methods, 286e287 Tensor data structure, 63
protein tertiary structure threshold segmentation, TensorFlow, 63e65
prediction, 265 287e288, 288f Theano, 68
Protein structure prediction types, 286f Threshold segmentation,
(PSP), 264, 265f Self-driving cars, 193 287e288, 288f
Public and medical health Sentiment analysis (SA), 124, Tissue blotting immunoassay,
management (PmHM), 135e137 226
247, 267e268 Serological assays, 222e226 Torch tool, 68
Shift-and-stitch model, 36e37 Transfer learning, 169
Quantum attacks, 108 Sigmoid function, 62f Transform domain, 14
Skip-gram model, 140e141, Trouble associating dissimilar
Random-CNN model, 144 140f algorithms, 206
Rank, 63 Sliding window approach, 36 Two-dimensional tensor,
Rectified linear unit (ReLU), 62 Social media, 124 64e65
Recurrent neural network Spatial domain, 14
(RNN), 75e79, 144e146, SqueezeNet U-Net network., 37
144fe145f, 251, 252f architectural design strategies, Unlabeled data set, 281
advantages, 78 8e9, 10f Unsupervised learning,
architecture, 78f one-level decomposition, 10f 282
biomedicine applications, parameters, 8t
251e252 Stacked autoencoders, 80f VGGNet, 163e164, 164f
disadvantages, 79 deep Boltzmann Machine Virtual assistants, 82
Reinforcement learning, (DBM), 81e82 Visible and near-infrared (VIS-
282e283 graphical depiction, 81f NIR) sensor systems,
ResNet, 164e167, 165fe166f Static-CNN model, 144 234e235
Restriction fragment length Steganography, 6 Visual recognition, 82
polymorphisms (RFLP), cryptography, 2
229 image steganography method, Wallet threats
Rheumatic diseases, 209e210 13 key management, 106
resolution, 13 parity multisig wallet attack,
Security methods spatial domain technique, 13 106e107
cryptography, 12 least significant bit privacy, 106
steganography, 11e12 technique, 13 Word embedding optimization,
types, 11e12 transform domain 141, 141f
watermarking, 12 technique, 14