Page 307 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 307

298  Index




          Protein secondary structure  Segmentation techniques, 279,  transform domain technique,
                 prediction (Continued)      285e288                      14
            disorder prediction, 265     different approaches for,    types, 13
            protein loop modeling, 265       285e286                Supervised learning, 281
            protein quality assessment   edge-based segmentation
                (QA), 265                    methods, 286e287       Tensor data structure, 63
            protein tertiary structure   threshold segmentation,    TensorFlow, 63e65
                prediction, 265              287e288, 288f          Theano, 68
          Protein structure prediction   types, 286f                Threshold segmentation,
                (PSP), 264, 265f       Self-driving cars, 193             287e288, 288f
          Public and medical health    Sentiment analysis (SA), 124,  Tissue blotting immunoassay,
                management (PmHM),           135e137                      226
                247, 267e268           Serological assays, 222e226  Torch tool, 68
                                       Shift-and-stitch model, 36e37  Transfer learning, 169
          Quantum attacks, 108         Sigmoid function, 62f        Transform domain, 14
                                       Skip-gram model, 140e141,    Trouble associating dissimilar
          Random-CNN model, 144              140f                         algorithms, 206
          Rank, 63                     Sliding window approach, 36  Two-dimensional tensor,
          Rectified linear unit (ReLU), 62  Social media, 124              64e65
          Recurrent neural network     Spatial domain, 14
                (RNN), 75e79, 144e146,  SqueezeNet                  U-Net network., 37
                144fe145f, 251, 252f     architectural design strategies,  Unlabeled data set, 281
            advantages, 78                   8e9, 10f               Unsupervised learning,
            architecture, 78f            one-level decomposition, 10f     282
            biomedicine applications,    parameters, 8t
                251e252                Stacked autoencoders, 80f    VGGNet, 163e164, 164f
            disadvantages, 79            deep Boltzmann Machine     Virtual assistants, 82
          Reinforcement learning,            (DBM), 81e82           Visible and near-infrared (VIS-
                282e283                  graphical depiction, 81f         NIR) sensor systems,
          ResNet, 164e167, 165fe166f   Static-CNN model, 144              234e235
          Restriction fragment length  Steganography, 6             Visual recognition, 82
                polymorphisms (RFLP),    cryptography, 2
                229                      image steganography method,  Wallet threats
          Rheumatic diseases, 209e210        13                       key management, 106
                                         resolution, 13               parity multisig wallet attack,
          Security methods               spatial domain technique, 13     106e107
            cryptography, 12               least significant bit       privacy, 106
            steganography, 11e12             technique, 13          Word embedding optimization,
            types, 11e12                   transform domain               141, 141f
            watermarking, 12                 technique, 14
   302   303   304   305   306   307