Page 306 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 306
Index 297
abnormality, detection/ Broad gateway protocol (BGP) multilayer perceptron
classification of, 32 hijacks, 108 approach, 172e185
computer-aided diagnosis, DDoS attack, 107 adaptive particle gray wolf
26e27 DNS hijacks, 107 optimization (APGWO),
computer-aided system eclipse attack, 107 181, 182fe184f, 186te187t
detection/diagnosis, 31e32 routing attack, 107 feature extraction, 172e177,
modalities, 29te30t sybil attack, 107 173f
registration, 32e33 Timejack attack, 107 feature selection, 177e185
segmentation, 28e31 transaction malleability gray wolf optimization
taxonomy, 30f attack, 107 (GWO), 179e181, 179f
Metaclassifiers, 131e133, 132t Plant diseases recognition particle swarm optimization
Mining pool threats, 105e106 advanced visualization (PSO), 177e178
block with holding (BWH), 105 techniques, 219e220 training and validation,
bribery attack, 106 amplified fragment length 172e177
mining malware, 106 polymorphism (AFLP), nuclei acidebased methods,
parasite chain attack, 229 226e229
105e106 artificial neural network, 156 pathogenesis, 220
pool hooping attack, 106 bacterial pathogens, 223t plant impairment detection,
selfish mining attack, 105 conventional models, 233e234
Multichannel CNN model, 144 168e169 polymerase chain reaction
Multilayer perceptron approach, convolutional neural network (PCR), 227e228
172e185 (CNN), 156, 161e167, 162f remote sensing systems, 223t,
adaptive particle gray wolf AlexNet, 162e163, 163f 233e235
optimization (APGWO), ResNet, 164e167, 165fe166f restriction fragment length
181, 182fe184f, 186te187t VGGNet, 163e164, 164f polymorphisms (RFLP),
feature extraction, 172e177, data set, 158, 158fe159f 229
173f deep learning, 236e237 serological assays, 222e226
feature selection, 177e185 definition, 220 traditional methods, 221e229
gray wolf optimization (GWO), detection, 235e239 transfer learning, 169
179e181, 179f farmers, 155 visible and near-infrared
particle swarm optimization feature selection (FS), 157 (VIS-NIR) sensor systems,
(PSO), 177e178 fluorescence and thermal 234e235
training and validation, sensors, 235 visualization techniques,
172e177 hyperspectral imaging, 237e238
238e239 Polymerase chain reaction
Natural language processing image preprocessing, 158e161 (PCR), 227e228
(NLP), 194, 245e246 innovative detection method, Pooling layer, 33
Noncontextual segmentation, 229e232 Proposed system architecture,
279 modern serological methods, 137e141, 138f
Nonstatic-CNN model, 144 225e226 Protein interaction prediction
dot blot immunobinding (PIP), 264
Object recognition, 279e280 assay, 226 drug discovery, 266
One-dimensional tensor, 64 enzyme-linked drugetarget interactions, 266,
OxfordNetor VGG19, 35 immunosorbent assay 267f
(ELISA), 225e226 network pharmacology, 266
Particle swarm optimization tissue blotting proteineprotein interactions,
(PSO), 177e178 immunoassay, 226 266
Peer-to-peer network-based monitoring pests and Protein secondary structure
attacks, 107e108 diseases, 234 prediction