Page 51 - Handbook of Electrical Engineering
P. 51

30    HANDBOOK OF ELECTRICAL ENGINEERING

              Therefore,
                                        1223(1.0 − 0.51796)η c (0.86) − 298(1.93063 − 1.0)
                             η p = 0.32 =
                                               1223η c − 298(1.93063 − 1.0 + η c )
                    Transposing for η c results in η c = 0.894. Hence the compressor efficiency would be 89.4%.


              2.2.2 Maximum Work Done on the Generator

              If the temperatures T 2e and T 4e are used in (2.11) to compensate for the efficiencies of the compressor
              and turbine, then it is possible to determine the maximum power output that can be obtained as a
              function of the pressure ratio r p .
                    The revised turbine work done U te is,

                                             U te = C p (T 3 − T 4 )η t kJ/kg                (2.21)

              The revised compressor work done U ce is,

                                                             1
                                            U ce = C p (T 2 − T 1 )  kJ/kg                   (2.22)
                                                             η c
              The revised heat input from the fuel U fe is,


                                             U fe = C p (T 3 − T 2e ) kJ/kg                  (2.23)
              where,
                                                        β

                                                       r p − 1 + η c
                                             T 2e = T 1
                                                           η c
              From (2.19),
                                                            δ
                                                    T 4 = T 3 r p                            (2.24)
              and
                                                            β
                                                   T 2 = T 1 r p                             (2.25)
              Substituting for T 2 , T 2e and T 4 gives the resulting output work done U oute to be,

                                                                          β

                                                            δ         T 1 r p − T 1
                               U oute = U te − U ce = C p (T 3 − T 3 r p )η t − C p
                                                                          η c

                                                 δ     T 1  β
                                    = C p T 3 (1 − r )ηt −  (r p − 1) kJ/kg                  (2.26)
                                                       η c
                    To find the maximum value of U oute differentiate U oute with respect to γ p and equate the result
              to zero. The optimum value of γ p to give the maximum value of U oute is,

                                                               d

                                                          T 1
                                                r pmax =                                     (2.27)
                                                        T 3 η c η t
   46   47   48   49   50   51   52   53   54   55   56