Page 91 - Handbook of Electrical Engineering
P. 91

SYNCHRONOUS GENERATORS AND MOTORS        71

           Where,

                                                     V  2
                                P r1 = V sin δ(E q X q ) +  sin 2δ(X d − X q )
                                                     2
                                                      2
                                P r2 = V cos δ(E q R a ) − V R a
                                Q r1 = V cos δ(E q X q )
                                                              2
                                                                        2
                                                       2
                                Q r2 = V sin δ(−E q R a ) − V (X d sin δ + X q cos δ)
                                                2
                               DEN = X d X q + R a
           The sending-end variables become,

                                            P S = IE q cos(δ + φ)
                                            Q S = IE q sin(δ + φ)


           3.5.3 A Simpler Case of a Salient Pole Generator

           Most practical generators have an armature resistance R a that is much less in value than the syn-
           chronous reactances X d and X q . Consequently the equations in sub-section 3.5.2 can be further
           simplified without incurring a noticeable error. They become,

                                             V d = V sin δ
                                             V q = V cos δ
                                             E q = E

                                             I d =−I sin(φ + δ)
                                             I q = I cos(φ + δ)

                                                  E q − V q
                                             I d =
                                                    X d
                                                  V d
                                             I q =
                                                  X q
                                                  P r1 + P r2
                                             P r =
                                                    DEN
                                                  Q r1 + Q r2
                                             Q r =
                                                    DEN
           Where,

                                                        V  2  2
                                   P r1 = V sin δ(E q X q ) +  sin δ(X d − X q )
                                                        2
                                   P r2 = 0

                                   Q r1 = V cos δ(E q X q )
   86   87   88   89   90   91   92   93   94   95   96