Page 351 - Handbook of Electronic Assistive Technology
P. 351
340 HANDBOOK OF ELECTRONIC ASSISTIVE TECHNOLOGY
References
Adalgeirsson, S.O., Breazeal, C., 2010. Mebot: a robotic platform for socially embodied presence. In:
Proceedings of the 5th ACM/IEEE International Conference on Human-robot Interaction. HRI ’10.
IEEE Press, Piscataway, NJ, USA, pp. 15–22.
Alsegier, R.A., 2016. Roboethics: sharing our world with humanlike robots. IEEE Potentials 35 (1), 24–28.
Available at: http://ieeexplore.ieee.org/document/7373741/.
Amigoni, F., Schiaffonati, V., 2005. Machine ethics and human ethics: a critical view our proposal for
machine ethics. Proceedings of the AAAI 2005 Fall Symposium on Machine Ethics. Available at: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.546.7762&rep=rep1&type=pdf.
Asada, H., Kanade, T., Takeyama, I., 1983. Control of a direct-drive arm. Journal of Dynamic Systems,
Measurement, and Control 105 (3), 136–142. Available at: https://pdfs.semanticscholar.org/3a38/
ca2d0d3ee0c1336b72ce1936e88bbb60c265.pdf.
Asimov, I., 1950. I, Robot, Gnome Press, inc Hardcover, first ed. Bingo Books, p. 2.
Babaiasl, M., Mahdioun, S.H., Jaryani, P., Yazdani, M., 2015. A review of technological and clinical aspects
of robot-aided rehabilitation of upper-extremity after stroke. Disability and Rehabilitation: Assistive
Technology 11 (4), 1–18.
Baniqued, P.D.E., Baldovino, R.G., Bugtai, N.T., 2015. Design considerations in manufacturing cost-
effective robotic exoskeletons for upper extremity rehabilitation. In: 2015 International Conference
on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment
and Management (HNICEM). IEEE, pp. 1–5.
Bemelmans, R., Gelderblom, G.L., Jonker, P., de Witte, L., 2012. Socially assistive robots in elderly care: a
systematic review into effects and effectiveness. Journal of the American Medical Directors Association
13 (2) 114–120.e1.
Beyl, P., Van Damme, M., Van Ham, R., Vanderborght, B., Lefeber, D., 2009. Design and control of a lower
limb exoskeleton for robot-assisted gait training. Applied Bionics and Biomechanics 6 (2), 229–243.
Boden, M., Bryson, J., Caldwell, D., Dautenhahn, K., Edwards, L., Kember, S., et al., 2017. Principles of
robotics: regulating robots in the real world. Connection Science 29 (2), 124–129.
Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco, G.E., Pons, J.L., Conteras-Vidal, J.L., 2015.
The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
Journal of NeuroEngineering and Rehabilitation 12 (1), 54.
Brady, M., 1985. Artificial intelligence and robotics. Artificial Intelligence 26 (1), 79–121.
Bruni, M.F., Melegari, C., De Cola, M.C., Bramanti, A., Bramanti, P., Calabro, R.S., 2018. What does best
evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-
analysis. Journal of Clinical Neuroscience 48, 11–17.
Calabrò, R.S., Cacciola, A., Berte, F., Manuli, A., Bramanti, A., Naro, A., Milardi, D., Bramanti, P., 2016.
Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?
Neurological Sciences 37 (4), 503–514.
Carlson, T., Demiris, Y., 2012. Collaborative control for a robotic wheelchair: evaluation of performance,
attention, and workload. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42
(3), 876–888.
Chan, D.Y., Chan, C.C., Au, D.K., 2006. Motor relearning programme for stroke patients: a randomized
controlled trial. Clinical Rehabilitation 20 (3), 191–200.
Chang, W.-L., Sabanovic, S., Huber, L., 2014. Observational study of naturalistic interactions with the
socially assistive robot PARO in a nursing home. In: The 23rd IEEE International Symposium on Robot
and Human Interactive Communication. IEEE, pp. 294–299.
Chen, B., Ma, H., Qin, L.Y., Gao, F., Chan, K.M., et al., 2016. Recent developments and challenges of lower
extremity exoskeletons. Journal of Orthopaedic Translation 5, 26–37.