Page 352 - Handbook of Electronic Assistive Technology
P. 352
Chapter 11 • Robotics 341
Contreras-Vidal, J.L., Bhagat, A.N., Brantley, J., Cruz-Garza, J.G., He, Y., et al., 2016. Powered exoskeletons
for bipedal locomotion after spinal cord injury. Journal of Neural Engineering 13 (3), 31001. Available at:
http://stacks.iop.org/1741-2552/13/i=3/a=031001?key=crossref.090fa04a07d4ec92dd9851f02d0e100e.
Coote, S., 2008. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke.
Clinical Rehabilitation 22, 395–405.
Dollar, A.M., Herr, H., 2008. Lower extremity exoskeletons and active orthoses: challenges and
state-of-the-art. IEEE Transactions on Robotics 24 (1), 144–158.
Fasola, J., Mataric, M.J., 2010. Robot exercise instructor: a socially assistive robot system to monitor and
encourage physical exercise for the elderly. In: 19th International Symposium in Robot and Human
Interactive Communication. IEEE, pp. 416–421.
Fazekas, G., Horvath, M., Troznai, T., Toth, A., 2007. Robot-mediated upper limb physiotherapy for patients
with spastic hemiparesis: a preliminary study. Journal of Rehabilitation Medicine 39 (7), 580–582.
Fazekas, G., 2009. Application of robots at patients with paresis of the upper limb as a consequence of cen-
tral motor neuron lesion for supporting physiotherapy during rehabilitation. Ideggyogyaszati Szemle
62 (11–12), 418–424.
FDA, 2015. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=PHL.
FDA, 2017. 510k Summary for the Indego Exoskeleton. Available at: https://www.accessdata.fda.gov/
cdrh_docs/pdf17/K171334.pdf.
Feil-Seifer, D., Matari, M.J., 2005. Defining socially assistive robotics. In: Proceedings of the 2005 IEEE 9th
International Conference on Rehabilitation Robotics. Available at, Chicago. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.297.3287&rep=rep1&type=pdf.
Feil-Seifer, D., Mataric, M., 2011. Socially assistive robotics. IEEE Robotics and Automation Magazine 18
(1), 24–31.
Fink, J., 2012. In: Anthropomorphism and Human Likeness in the Design of Robots and Human-
Robot Interaction. Springer, Berlin, Heidelberg, pp. 199–208. Available at: http://link.springer.
com/10.1007/978-3-642-34103-8_20.
Garcia, J.C., Marron-Romera, M., Urena, J., Gualda, D., 2013. Intelligent Wheelchairs: filling the gap
between labs and people. Assistive Technology: From Research to Practice. Available at: https://
www.researchgate.net/profile/Juan_Carlos_Garcia_Garcia/publication/260284468_Intelligent_
Wheelchairs_Filling_the_Gap_between_Labs_and_People/links/0deec530793a75f12b000000/
Intelligent-Wheelchairs-Filling-the-Gap-between-Labs-and-People.pdf.
Garcia, E., Cestari, M., Sanz-Merodio, D., 2014. Wearable exoskeletons for the physical treatment of children
with quadriparesis. In: 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 425–430.
Gardner, A.D., Potgieter, J., Noble, F.K., 2017. A review of commercially available exoskeletons’ capabili-
ties. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP).
IEEE, pp. 1–5.
Geppert, L., 2004. Qrio, the robot that could. IEEE Spectrum 41 (5), 34–37.
Gopura, R.A.R.C., Kiguchi, K., 2009. Mechanical designs of active upper-limb exoskeleton robots: state-
of-the-art and design difficulties. In: 2009 IEEE International Conference on Rehabilitation Robotics.
IEEE, pp. 178–187.
Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V., 2011. A brief review on upper extremity robotic exoskel-
eton systems. In: 2011 6th International Conference on Industrial and Information Systems. Kandy,
pp. 346–351.
Gopura, R.A.R.C., Banara, D.S.V., Kiguchi, K., Mann, G.K.I., 2016. Developments in hardware systems of
active upper-limb exoskeleton robots: a review. Robotics and Autonomous Systems 75, 203–220.
Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., et al., 2009. Mechatronic
design of NAO humanoid. In: 2009 IEEE International Conference on Robotics and Automation. IEEE,
pp. 769–774.