Page 356 - Handbook of Electronic Assistive Technology
P. 356

Chapter 11 • Robotics  345



                 van Breemen, A., Yan, X., Meerbeek, B., 2005. iCat. In: Proceedings of the Fourth International Joint
                   Conference on Autonomous Agents and Multiagent Systems - AAMAS ’05. ACM Press, New York, New
                   York, USA, p. 143.
                 Van der Loos, H.F.M., Reinkensmeyer, D.J., 2008. Rehabilitation and health care robotics. In: Springer
                   Handbook of Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1223–1251.
                 Van der Loos, H.F.M., 1995. VA/Stanford rehabilitation robotics research and development program: les-
                   sons learned in the application of robotics technology to the field of rehabilitation. IEEE Transactions
                   on Rehabilitation Engineering 3 (1), 46–55.
                 Veerbeek, J.M., Langbroek-Amersfoort, A.C., van Wegen, E.E.H., Meskers, C.G.M., Kwakkel, G., 2017. Effects
                   of robot-assisted therapy for the upper limb after stroke. Neurorehabilitation and Neural Repair 31 (2),
                   107–121.
                 Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Van Asseldonk, E.H.F., van der Kooji, H.,
                   2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE
                   Transactions on Neural Systems and Rehabilitation Engineering 15 (3), 379–386.
                 Veruggio, G., 2006. The euron roboethics roadmap. In: 2006 6th IEEE-RAS International Conference on
                   Humanoid Robots. IEEE, pp. 612–617.
                 Wang, Z., Peyrodie, L., Cao, H., Agnani, O., Watelain, E., Wang, H., 2016. Slow walking model for children
                   with multiple disabilities via an application of humanoid robot. Mechanical Systems and Signal
                   Processing 68, 608–619.
                 Wang, Z., Peyrodie, L., Cao, H., Agnani, O., 2018. A New Lower Limbs Exoskeleton for Children with Multiple
                   Disabilities. Preprint submitted to Journal of Mechanical Systems and Signal Processing.
                 Weightman, A., Alexoulis-Chrysovergis, A., Oltean, S., 2014. What should we consider when designing
                   rehabilitation robots for the upper limb of the neurologically impaired. In: Procs Australasian Conf
                   Robotics and Automation, pp. 1–10.
                 Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S., 2002. Treadmill training with partial body
                   weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients:
                   a randomized crossover study. Stroke 33 (12), 2895–2901.
                 Yeh, T.-J., Wu, M.J., Lu, T.J., Wu, F.K., Huang, C.R., 2010. Control of McKibben pneumatic muscles for a
                   power-assist, lower-limb orthosis. Mechatronics 20 (6), 686–697.
                 Zhang, X., Wang, H., Tian, Y., Peyrodie, L., July 2015. Modeling, simulation & control of human lower
                   extremity exoskeleton. In: Control Conference (CCC), 2015 34th Chinese. IEEE, pp. 6066–6071.
                 Zhang, X., Wang, H., Tian, Y., Peyrodie, L., Wang, X., 2018. Model-free based neural network control with
                   time-delay estimation for lower extremity exoskeleton. Neurocomputing 272, 178–188.
                 Zollo, L., Wada, K., Van der Loos, H.F.M., 2013. Special issue on assistive robotics [from the guest editors].
                   IEEE Robotics and Automation Magazine 20 (1), 16–19.
   351   352   353   354   355   356   357   358   359   360   361