Page 317 - Handbook of Lasers
P. 317
335. Holst, J., Eckey, L., Hoffmann, A. et al., Mechanisms of optical gain in cubic gallium nitrite,
Appl. Phys. Lett. 72, 1439 (1998).
336. Klann, R., Brandt, O., Yang, H., Grahn, H. T., and Ploog, K. H., Optical gain in optically
pumped cubic GaN at room temperature, Appl. Phys. Lett. 70, 1076 (1997).
337. Schmidt, T. J., Cho, Y.-H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars,
S. P., Energy selective optically pumped stimulated emission from InGaN/GaN multiple
quantum wells, Appl. Phys. Lett. 73, 560 (1998).
338. Gauthier-Lafaye, O., Boucaud, P., Julien, F. H., Sauvage, S., Cabaret, S., Lourtioz, J.-M.,
Thierry-Mieg, V., and Planel, R., Long-wavelength (»15.5 mm) uniploar semiconductor
laser in GaAs quantum wells, Appl. Phys. Lett. 71, 3619 (1997).
339. Gauthier-Lafaye, O., Sauvage, S., Boucaud, P., Julien, F. H., Glotin, F., Prazeres, R., Ortega,
J.-M., Thierry-Mieg, V., and Planel, R., Investigation of mid-infrared intersubband
stimulated gain under optical pumping in GaAs/AlGaAs quantum wells, J. Appl. Phys. 83,
2920 (1998).
340. Tredicucci, A., Gmachl, C., Capasso, F., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., A
multiwavelength semiconductor laser, Nature 396, 350 (1998).
341. Park, G., Shchekin, O. B., Huffaker, D. L., and Deppe, D. G., Lasing from InGaAs/GaAs
quantum dots with extended wavelength and well-defined harmonic-oscillator energy
levels, Appl. Phys. Lett. 73, 3351 (1998).
342. Choi, H. K., Walpol, J. N., Turner, G. W., Eglash, S. J., Missaggia, L. J., and Connors, M. K.,
GaInAsSb-AlGaAsSb tapered lasers emitting at 2 mm, IEEE Photon. Technol. Lett. 10,
1117 (1998).
343. Garbuzov, D. Z., Gokhale, M R., Dries, J. C., Studenkov, P., Martinelli, R. U., Connolly, J.
C., and Forrest, S. R., 13.3W quasi-continuous operation of 0.99 mm wavelength SCH-QW
InGaAs/GaAs/InGaP boradened waveguide lasers, Electron. Lett. 33, 1462 (1997).
344. Garbuzov, D. Z., Menna, R. J., Martinelli, R. U., Abeles, J. H., and Connolly, J. C., High
power continuous and quasi-continuous wave InGaP/InP broad-waveguide separate
confinement-heterostructure multiquantum well diode lasers, Electron. Lett. 33, 1635
(1997).
345. Schiebl, U. P. and Rohr, J., 60ºC lead salt laser emission near 5-mm wavelength, Infrared
Phys. Technol. 40, 325 (1999).
346. Someya, T., Tachibana, K., Lee, J., Kamiya, T., and Arakawa, Y., Lasing emission from an
In Ga N vertical cavity surface emitting laser. Jpn. J. Appl. Phys. 37, L1426 (1998).
0.1 0.9
347. Someya, T., Werner, R., Forchel, A., Catalano, M., Cingolani, R., and Arakawa, Y., Room
temperature lasing at blue wavelengths in gallium nitrde micrcavities, Science 285, 1905
(1999).
348. Sidorin, Y. Blomberg, M., and Karioja, P., Demonstration of a tunable hybrid laser diode
using an electrostatically tunable silicon micromachined Fabry-Perot interferometer
device, IEEE Photon. Technol. Lett. 11, 18 (1999).
349. Bewley, W. W., Fleix, C. L., Aifer, E. H. et al., Above-room-temperature optically pumped
midinfrared "W" lasers, Appl. Phys. Lett. 73, 3833 (1998).
350. Bewley, W. W., Fleix, C. L., Vurgaftman, I. et al., High-temperature continuous-wave 3–6.1
mm "W" lasers with diamond-pressure-bond heat sinking, Appl. Phys. Lett. 74, 1075
(1999).
351. Nikitenko, V. A., Tereshchnko, A. I., Kuzmina, I. P., and Lobachev, A. N., Stimulated
emission in ZnO at a hgh level of one-photon excitation, Opt. Spectrosc. (USSR) 50, 331
(1981).
352. Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H., and Chang, R. P. H., Random
laser action in semiconductor powder, Phys. Rev. Lett. 82, 2278 (1999).
353. Ivanov, S., Toropov, A., Sorokin, S. et al., ZnSe-based blue-green lasers with a short-period
superlattice waveguide, Appl. Phys. Lett. 73, 2104 (1998).
©2001 CRC Press LLC