Page 491 - Handbook of Properties of Textile and Technical Fibres
P. 491

464                             Handbook of Properties of Textile and Technical Fibres

                                   2
         where s r is computed in kg/mm . For large l m Eq. (13.18) reduces to the Gaussian
         equation (Treloar, 1975) and

                         1

             s r ¼ C r l    2                                          (13.21)
                        l
         where C r is the elastic network modulus. It is interesting, that the expression of Eq.
         (13.21) in terms of true stress (s tr ) leads to the form


                      2   1
             s tr ¼ C r l                                              (13.22)
                          l
            The strain dependence of the glassy polymers networks deformation can be also
         expressed by another non-Gaussian chain statistic (Arruda and Boyce, 1993). For the
         plane-strain geometry, the rubberlike stress s r generated by the entangled polymeric
         chain network in the direction of loading is expressed in the form:

                  p ffiffiffiffi
                   n E h  2   1    1  l c
             s r ¼       l     2  L  p ffiffiffiffi                            (13.23)
                   3 l c      l        n

         where E h is the initial strain hardening modulus of the network, n is the number of
         “rigid” entanglements between crosslinks providing limiting extensibility of a
                     p ffiffiffi
         chain (l m ¼  n), and l c is the stretch on each chain in the network
              q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           2
                   2
         l c ¼   l þ 1 þ 1 l  3. The final model describing polymeric material defor-
         mation behavior can be then simply expressed as the sum of s r þ s y where s y is yield
         stress (Bergstroem and Boyce, 1998).
            The rubberlike behavior of a polymeric network can be approximated by a model
         composed from a basic cell containing eight non-Gaussian chains (Langevin springs).
         This model includes the cooperative nature of the network deformation. The response
         of this model to a uniaxial deformation is in the form (Arruda and Boyce, 1993; Diani,
         2008)

                      8                            19
                                        0
                           0 q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1
                   p  ffiffiffiffi >    2                    >
                  G N  <       l þ 2=l      2        =
             s r ¼ p    L   1 @  p    A B l   1=l C                    (13.24)
                                        @q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiA
                    ffiffiffi
                                 ffiffiffiffiffiffi
                                 3N          2
                  l 3 >                              >
                      :                     l þ 2=l  ;
            Parameter G is equal to the material shear modulus and N is a function of the stretch
         at break l b , i.e.,
                  2
                 l þ 2=l b
                  b
             N ¼                                                       (13.25)
                     3
   486   487   488   489   490   491   492   493   494   495   496