Page 364 - Hardware Implementation of Finite-Field Arithmetic
P. 364

344    Inde x


               algorithm (Cont.):            congruence, 4
                 polynomial basis classic squaring,   class, 5
                    187, 188                   modulo f(x), 15
                 polynomial basis inversion, AIA,   modulo n, 4
                    207, 208, 210, 211         properties, 5
                 polynomial basis LSB-first    of polynomials, 15
                    multiplier, 172          conjugate, 20, 236
                 polynomial basis LSB-first squaring,
                    187, 193                      D D
                 polynomial basis Mastrovito   defining element, 19
                    multiplication, 177, 180  deg. See degree
                  for AOPs, 217              degree, polynomial, 11
                  for class 1 pentanomials, 223  discrete logarithm system, 287
                  for trinomials, 220        divider
                 polynomial basis Montgomery   binary algorithm, 102, 152
                    exponentiation, 200        Euclidean algorithm, 99, 145
                 polynomial basis Montgomery   Fermat’s theorem, 110
                    multiplication, 183, 184   multiplications over GF(p ) and
                                                                 m
                 polynomial basis Montgomery      inversion over Z , 155
                    squaring, 188, 190         nonrestoring, 95  p
                 polynomial basis MSB-first    optimal extension field, 159
                    multiplier, 172            plus-minus algorithm, 107
                               ik
                 precomputation of 2  mod m, 40  division
                 shift and add multiplication, 66  integer, 2
                 SRT algorithm, 31             integer division, 93
                 subtract and shift, 97        mod f(x)
                 triangular basis inversion for   binary algorithm, 147
                       m
                    GF(2 ), 281                 Euclidean algorithm, 140
                 triangular basis multiplication for   multiplications over GF(p ) and
                                                                  m
                    GF(2 ), 282, 283               inversion over Z , 154
                       m
                                                               p
                 Z [x]/f(x) addition, 117, 118  optimal extension field, 156
                  p
                 Z [x]/f(x) binary exponentiation,
                  p                            mod p
                    129                         binary algorithm, 100
                 Z [x]/f(x) LSE-first multiplier, 126
                  p                             Euclidean algorithm, 98
                 Z [x]/f(x) MSE-first multiplier, 124  Fermat’s theorem, 110
                  p
                 Zp[x]/f(x) multiplication, 123  plus-minus algorithm, 104
                 Z [x]/f(x) subtraction, 118, 119  divisor, 1, 12
                  p
               AOP, 216                      dual basis, 21, 269
               automorphism, 21                convenient dual basis, 273
                 Frobenius, 21                 conversion, 4
                                               inverse, 275
                    B B                        multiplication, 270
               basis, 20                       optimal dual bases, 273
                 dual, 21                      pentanomial, 273
                 normal, 21                    squaring, 274
                 polynomial, 21                trinomial, 273
               Berlekamp multiplier, 271       weakly dual bases, 270
               Bezout’s identity, 182        duality, 21, 269
               binary algorithm, 91, 100, 204
               binary extension field, 22, 163, 235  E E
                                             elliptic curve, 288
                    C C                        Hasse theorem, 289
               canonical basis. See polynomial basis  Koblitz, 299
               carry-free operations, 30       nonsupersingular, 289
               cofactor, 292                   projective form, 295
               coefficient, leading, 11        supersingular, 289
   359   360   361   362   363   364   365   366   367